Antibiotic-resistant Acinetobacter baumannii, is a common pathogen found in hospital settings and has become nosocomial due to its high infection-causing tendency amongst ICU patients. The present study explores the cyanocompoundswhich were capable to inhibit the Penicillin Binding Protein of A. baumannii through molecular docking, ADMET, and molecular dynamicssimulation strategy.
View Article and Find Full Text PDFSome of the SARS-CoV-2 variants are said to be more infectious than the previous others and are causing panic around the globe. Cases related to Delta plus (δ+) and omicron (ο) variants are on the rise worldwide. This sudden surge warrants an investigation into the reasons for its binding with ACE-2.
View Article and Find Full Text PDFAntibiotic resistance is a major emerging issue in the health care sector, as highlighted by the WHO. Filamentous Thermosensitive mutant Z (Fts-Z) is gaining significant attention in the scientific community as a potential anti-bacterial target for fighting antibiotic resistance among several pathogenic bacteria. The Fts-Z plays a key role in bacterial cell division by allowing Z ring formation.
View Article and Find Full Text PDFThe increase in the number of cases of type 2 diabetes mellitus (T2DM) and the complications associated with the side effects of chemical/synthetic drugs have raised concerns about the safety of the drugs. Hence, there is an urgent need to explore and identify natural bioactive compounds as alternative drugs. Protein tyrosine phosphatase 1B (PTP1B) functions as a negative regulator and is therefore considered as one of the key protein targets modulating insulin signaling and insulin resistance.
View Article and Find Full Text PDFAntibiotic resistance is one of the major growing concerns for public health. Conventional antibiotics act on a few predefined targets and, with time, several bacteria have developed resistance against a large number of antibiotics. The WHO has suggested that antibiotic resistance is at a crisis stage and identification of new antibiotics and targets could be the only approach to bridge the gap.
View Article and Find Full Text PDF