Publications by authors named "Manisha Banerjee"

This study has explored the involvement of Intrinsically Disordered Proteins (IDPs) in cyanobacterial stress response. IDPs possess distinct physicochemical properties, which allow them to execute diverse functions. Anabaena PCC 7120, the model photosynthetic, nitrogen-fixing cyanobacterium encodes 688 proteins (11 % of the total proteome) with at least one intrinsically disordered region (IDR).

View Article and Find Full Text PDF

Excess of selenium (Se) in aquatic ecosystems has necessitated thorough investigations into the effects/consequences of this metalloid on the autochthonous organisms exposed to it. The molecular details of Se-mediated adaptive response remain unknown in cyanobacteria. This study aims to uncover the molecular mechanisms driving the divergent physiological responses of cyanobacteria on exposure to selenate [Se(VI)] or selenite [Se(IV)], the two major water-soluble oxyanions of Se.

View Article and Find Full Text PDF
Article Synopsis
  • Thioredoxins (Trxs) are important proteins involved in various physiological processes, with Alr2205 from Anabaena PCC 7120 showing unique disulfide reductase activity despite a different active site motif.
  • Alr2205 interacts with and reduces Alr4641, enhancing its function as a peroxidase, and exhibits structural characteristics like forming an intramolecular disulfide bond.
  • Experiments showing that overproducing Alr2205 increases resistance to H2O2 but not cadmium stress highlight its vital role in protecting prokaryotic cells from toxic effects.
View Article and Find Full Text PDF

Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties.

View Article and Find Full Text PDF

KatB, a hexameric Mn-catalase, plays a vital role in overcoming oxidative and salinity stress in the ecologically important, N-fixing cyanobacterium, Anabaena. The 5 N-terminal residues of KatB, which show a high degree of conservation in cyanobacteria, form an antiparallel β-strand at the subunit interface of the KatB hexamer. In this study, the contribution of these N-terminal non-active site residues, towards the maintenance of the structure, biochemical properties, and redox balance was evaluated.

View Article and Find Full Text PDF

Selenium, an essential trace element for animals, poses a threat to all forms of life above a threshold concentration. The ubiquitously present cyanobacteria, a major photosynthetic biotic component of aquatic and other ecosystems, are excellent systems to study the effects of environmental toxicants. The molecular changes that led to beneficial or detrimental effects in response to different doses of selenium oxyanion Se(IV) were analyzed in the filamentous cyanobacterium Anabaena PCC 7120.

View Article and Find Full Text PDF

A library of new phenstatin based indole linked chalcone compounds (9a-z and 9aa-ad) were designed and synthesized. Of these, compound 9a with 1-methyl, 2- and 3-methoxy substituents in the aromatic ring was efficacious against the human oral cancer cell line SCC-29B, spheroids, and in a mouse xenograft model of oral cancer AW13516. Compound 9a exhibited anti-cancer activity through disrupting cellular integrity and affecting glucose metabolism-which is a hallmark of cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Catalases are enzymes that break down hydrogen peroxide and are divided into heme and non-heme (Mn) catalases, with Mn-catalases gaining more attention recently.
  • Anabaena PCC 7120, a type of cyanobacterium, has two Mn-catalases (KatA and KatB) and no heme catalases, with KatB being crucial for managing salt and oxidative stress.
  • This review highlights the recent findings regarding Mn-catalases, particularly KatB, emphasizing their unique properties and vital role in the organism's stress response.
View Article and Find Full Text PDF

Here, we show the utility of a cyanobacterial biomass for overproduction and easy downstream processing of the thermostable protein KatB (a Mn-catalase). The nitrogen-fixing blue-green alga, Anabaena, was bioengineered to overexpress the KatB protein (An-KatB). Interestingly, pure An-KatB could be isolated from Anabaena by a simple physical process, obviating the need of expensive resins or chromatographic steps.

View Article and Find Full Text PDF

KatB, a salt-inducible Mn-catalase, protects the cyanobacterium Anabaena from salinity/oxidative stress. In this report, we provide distinctive insights into the biological-biochemical function of KatB at the molecular level. Anabaena overexpressing the wild-type KatB protein (KatBWT) detoxified H O efficiently, showing reduced burden of reactive oxygen species compared with the strain overproducing KatBF2V (wherein F-2 is replaced by V).

View Article and Find Full Text PDF

We report a clonal outbreak of multidrug-resistant (MDR) Klebsiella variicola (sequence type [ST] 771) in a Bangladeshi neonatal unit from October 2016 to January 2017, associated with high mortality (54.5%). During the outbreak, K.

View Article and Find Full Text PDF

, a highly radioresistant bacterium, does not show LexA-dependent regulation of expression in response to DNA damage. On the other hand, phosphorylation of DNA repair proteins such as PprA and RecA by a DNA damage-responsive Ser/Thr protein kinase (STPK) (RqkA) could improve their DNA metabolic activities as well as their roles in the radioresistance of Here we report RqkA-mediated phosphorylation of cell division proteins FtsZ and FtsA and in surrogate bacteria expressing RqkA. Mass spectrometric analysis mapped serine 235 and serine 335 in FtsZ and threonine 272, serine 370, and serine 386 in FtsA as potential phosphorylation sites.

View Article and Find Full Text PDF

Cysteine desulfurases, which supply sulfur for iron-sulfur cluster biogenesis, are broadly distributed in all phyla including cyanobacteria, the progenitors of plant chloroplasts. The SUF (sulfur utilization factor) system is responsible for Fe-S cluster biosynthesis under stress. The operon from cyanobacterium PCC 7120 showed the presence of a cysteine desulfurase, (), but not the accessory sulfur-accepting protein (SufE).

View Article and Find Full Text PDF

Increased poly glutamine (polyQ) stretch at N-terminal of Huntingtin (HTT) causes Huntington's disease. HTT interacts with large number of proteins, although the preference for such interactions with wild type or mutated HTT protein remains largely unknown. HYPK, an intrinsically unstructured protein chaperone and interactor of mutant HTT was found to interact with myeloid leukemia factor 1 (MLF1) and 2 (MLF2).

View Article and Find Full Text PDF

Catalases are ubiquitous enzymes that detoxify HO in virtually all organisms exposed to oxygen. The filamentous, nitrogen-fixing cyanobacterium, PCC 7120, shows the presence of 2 genes ( and ) that encode Mn-catalases. We have recently shown that pre-treatment of with NaCl causes substantial induction of the KatB protein, which consequently leads to increased oxidative stress resistance in that cyanobacterium.

View Article and Find Full Text PDF

Catalases, enzymes that detoxify H2O2, are widely distributed in all phyla, including cyanobacteria. Unlike the heme-containing catalases, the physiological roles of Mn-catalases remain inadequately characterized. In the cyanobacterium Anabaena, pretreatment of cells with NaCl resulted in unusually enhanced tolerance to oxidative stress.

View Article and Find Full Text PDF

Background: Cyanobacteria, progenitors of plant chloroplasts, provide a suitable model system for plants to study adaptation towards different abiotic stresses. Genome of the filamentous, heterocystous, nitrogen-fixing cyanobacterium Anabaena PCC7120 harbours a single gene (alr4641) encoding a typical 2-Cys-Peroxiredoxins (2-Cys-Prxs). 2-Cys-Prxs are thiol-based peroxidases that also function as molecular chaperones in plants and other systems.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are inevitably generated as by-products of respiratory/photosynthetic electron transport in oxygenic photoautotrophs. Unless effectively scavenged, these ROS can damage all cellular components. The filamentous, heterocystous, nitrogen-fixing strains of the cyanobacterium, Anabaena, serve as naturally abundant contributors of nitrogen biofertilizers in tropical rice paddy fields.

View Article and Find Full Text PDF

Role of the non-haem, manganese catalase (Mn-catalase) in oxidative stress tolerance is unknown in cyanobacteria. The ORF alr0998 from the Anabaena PCC7120, which encodes a putative Mn-catalase, was constitutively overexpressed in Anabaena PCC7120 to generate a recombinant strain, AnKat(+). The Alr0998 protein could be immunodetected in AnKat(+) cells and zymographic analysis showed a distinct thermostable catalase activity in the cytosol of AnKat(+) cells but not in the wild-type Anabaena PCC7120.

View Article and Find Full Text PDF

Prxs (peroxiredoxins) are ubiquitous thiol-based peroxidases that detoxify toxic peroxides. The Anabaena PCC 7120 genome harbours seven genes/ORFs (open reading frames) which have homology with Prxs. One of these (all1541) was identified to encode a novel Grx (glutaredoxin) domain-containing Prx by bioinformatic analysis.

View Article and Find Full Text PDF

Huntingtin protein (Htt), whose mutation causes Huntington's disease (HD), interacts with large numbers of proteins that participate in diverse cellular pathways. This observation indicates that wild-type Htt is involved in various cellular processes and that the mutated Htt alters these processes in HD. The roles of these interacting proteins in HD pathogenesis remain largely unknown.

View Article and Find Full Text PDF

The formation of a heterodimer between Huntingtin-interacting protein-1 (HIP-1) and its novel partner HIPPI (HIP-1 protein interactor) through their pseudo death-effector domains (pDEDs) is a key step that recruits caspase-8 and initiates apoptosis. This could be one of the pathways by which apoptosis is increased in Huntington's disease (HD). A construct consisting of the pDED of HIPPI has been cloned and overexpressed as 6NH-tagged protein and purified by Ni-NTA affinity chromatography.

View Article and Find Full Text PDF