Microtiter plate assay is a conventional and standard tool for high-throughput (HT) screening that allows the synthesis, harvesting, and analysis of crystals. The microtiter plate screening assays require a small amount of solute in each experiment, which is adequate for a solid-state crystal analysis such as X-ray diffraction (XRD) or Raman spectroscopy. Despite the advantages of these high-throughput assays, their batch operational nature results in a continuous decrease in supersaturation due to crystal nucleation and growth.
View Article and Find Full Text PDFAmorphous solid dispersion (ASD) is an enabling approach utilized to deliver poorly soluble compounds. ASDs can spontaneously generate drug-rich amorphous nanoparticles upon dissolution, which can act as a reservoir for maintaining supersaturation during oral absorption. But, conventional ASDs are often limited in drug loadings to < 20 %.
View Article and Find Full Text PDFIntegrating sensors in miniaturized devices allow for fast and sensitive detection and precise control of experimental conditions. One of the potential applications of a sensor-integrated microfluidic system is to measure the solute concentration during crystallization. In this study, a continuous-flow microfluidic mixer is paired with an electrochemical sensor to enable in situ measurement of the supersaturation.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are porous crystalline structures that are composed of coordinated metal ligands and organic linkers. Due to their high porosity, ultra-high surface-to-volume ratio, and chemical and structural flexibility, MOFs have numerous applications. MOFs are primarily synthesized in batch reactors under harsh conditions and long synthesis times.
View Article and Find Full Text PDFA flow-controlled microfluidic device for parallel and combinatorial screening of crystalline materials can profoundly impact the discovery and development of active pharmaceutical ingredients and other crystalline materials. While the existing continuous-flow microfluidic devices allow crystals to nucleate under controlled conditions in the channels, their growth consumes solute from the solution leading to variation in the downstream composition. The materials screened under such varying conditions are less reproducible in large-scale synthesis.
View Article and Find Full Text PDFScreening of crystal polymorphs and morphology and measurement of crystallization kinetics in a controlled supersaturated environment is crucial for the development of crystallization processes for pharmaceuticals, agrochemicals, semiconductors, catalysts, and other specialty chemicals. Most of the current tools including microtiter plates and droplet-based microfluidic devices suffer from depleting supersaturation in small compartments due to nucleation and growth of crystals. Such variation in supersaturation not only affects the outcome but also leads to impediments during the scale-up of the crystallizer.
View Article and Find Full Text PDFCoacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime.
View Article and Find Full Text PDFCarbon dioxide solubility (vapor-liquid equilibria: VLE) in an ionic liquid, 1-ethyl-3-ethylimidazolium acetate ([eeim][Ac]) was measured using a gravimetric microbalance at four isotherms (about 283, 298, 323, and 348 K) up to about 2 MPa. An equation-of-state (EOS) model was used to analyze the VLE data and has predicted vapor-liquid-liquid equilibria (VLLE: or liquid-liquid separations) in CO(2)-rich solutions. The VLLE prediction was confirmed experimentally using a volumetric method and likely the liquid-liquid equilibria will intersect with the solid-liquid equilibria such that no lower critical solution temperature can exist and the binary system may be classified as Type III phase behavior.
View Article and Find Full Text PDFClassical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster.
View Article and Find Full Text PDFThe gas-phase valence binding energy spectrum of isolated ion-pairs of the commonly used [1-ethyl-3-methylimidazolium][bis(trifluoromethylsulfonyl)imide)] room-temperature ionic liquid is obtained by photoionization of a molecular beam of ionic liquid vapor by extreme ultraviolet light. The isolated ion-pair nature of the ionic liquid vapor is corroborated by single photon ionization mass spectroscopy, complemented by computed vaporization energetics of ion-pairs and clusters of ion-pairs. The valence binding energy spectrum of the isolated ion-pairs is discussed in comparison with available liquid-phase data and theoretical density functional theory calculations.
View Article and Find Full Text PDFAtomistic simulations are conducted to examine the dependence of the viscosity of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on temperature and water content. A nonequilibrium molecular dynamics procedure is utilized along with an established fixed charge force field. It is found that the simulations quantitatively capture the temperature dependence of the viscosity as well as the drop in viscosity that occurs with increasing water content.
View Article and Find Full Text PDF