Publications by authors named "Manish L Raorane"

Article Synopsis
  • - Jasmonate is a crucial hormone in plants that helps regulate development and responses to stress, primarily through the COI receptor which targets specific repressors for degradation, leading to the activation of defense genes.
  • - In rice, three COI genes (OsCOI1a, OsCOI1b, and OsCOI2) play important roles, with OsCOI2 recently identified as key in transcriptional changes during jasmonate signaling, particularly linked to root development and stress response.
  • - Mutations in OsCOI2 result in less effective responses to jasmonate compared to other COI genes, suggesting that OsCOI2 significantly influences the balance between growth and defense while also affecting the plant's
View Article and Find Full Text PDF

Unlabelled: Gas chromatography-tandem mass spectrometry with electron ionization (GC-EI-MS/MS) provides rich information on stable-isotope labeling for 13C-metabolic flux analysis (13C-MFA). To pave the way for the routine application of tandem MS data for metabolic flux quantification, we aimed to compile a comprehensive library of GC-EI-MS/MS fragments of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino acids. First, we established an analytical workflow that combines high-resolution gas chromatography-quadrupole time-of-flight mass spectrometry and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments.

View Article and Find Full Text PDF

Salinity is a global environmental threat to agricultural production and food security around the world. To delineate salt-induced damage from adaption events we analysed a pair of sorghum genotypes which are contrasting in their response to salt stress with respect to physiological, cellular, metabolomic, and transcriptional responses. We find that the salt-tolerant genotype Della can delay the transfer of sodium from the root to the shoot, more swiftly deploy accumulation of proline and antioxidants in the leaves and transfer more sucrose to the root as compared to its susceptible counterpart Razinieh.

View Article and Find Full Text PDF

Paclitaxel synthesis in Taxus cells correlates with a cell-fate switch that leads to vacuoles of a glossy appearance and vermiform mitochondria. This switch depends on actin and apoplastic respiratory burst. Plant cell fermentation, the production of valuable products in plant cell culture, has great potential as sustainable alternative to the exploitation of natural resources for compounds of pharmaceutical interest.

View Article and Find Full Text PDF

Since the discovery of the anticancer drugs vinblastine and vincristine, Catharanthus roseus has been intensively studied for biosynthesis of several terpene indole alkaloids (TIAs). Due to their low abundance in plant tissues at a simultaneously high demand, modes of production alternative to conventional extraction are mandatory. Plant cell fermentation might become one of these alternatives, yet decades of research have shown limited success to certain product classes, leading to the question: how to preserve the intrinsic ability to produce TIAs (metabolic competence) in cell culture? We used the strategy to use the developmental potency of mature embryos to generate such strains.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolites are crucial in plants for development and stress responses, and their analysis can provide insights into underlying biological processes; they can also serve as biomarkers for plant breeding.
  • The study used genome-wide association studies (GWAS) on a wild barley population to identify metabolic quantitative trait loci (mQTL) linked to about 130 metabolites, finding significant correlations primarily with sugars.
  • The research highlighted how sugar-related genes are connected to plant growth, development, and disease resistance, revealing genetic variation in sugar metabolites and confirming their role in flowering through association with known flowering time genes.
View Article and Find Full Text PDF

Like other crop species, barley, the fourth most important crop worldwide, suffers from the genetic bottleneck effect, where further improvements in performance through classical breeding methods become difficult. Therefore, indirect selection methods are of great interest. Here, genomic prediction (GP) based on 33,005 SNP markers and, alternatively, metabolic prediction (MP) based on 128 metabolites with sampling at two different time points in one year, were applied to predict multi-year agronomic traits in the nested association mapping (NAM) population HEB-25.

View Article and Find Full Text PDF

Background: Better understanding of the physiological and metabolic status of plants can only be obtained when metabolic fluxes are accurately assessed in a growing plant. Steady state C-MFA has been established as a routine method for analysis of fluxes in plant primary metabolism. However, the experimental system needs to be improved for continuous carbon enrichment from labelled sugars into metabolites for longer periods until complex secondary metabolism reaches steady state.

View Article and Find Full Text PDF

It is widely known that numerous adaptive responses of drought-stressed plants are stimulated by chemical messengers known as phytohormones. Jasmonic acid (JA) is one such phytohormone. But there are very few reports revealing its direct implication in drought related responses or its cross-talk with other phytohormones.

View Article and Find Full Text PDF

Background: Quantitative reverse transcription PCR (qRT-PCR) has been routinely used to quantify gene expression level. This technique determines the expression of a target gene by comparison to an internal control gene uniformly expressed among the samples analyzed. The reproducibility and reliability of the results depend heavily on the reference genes used.

View Article and Find Full Text PDF

With the advent of high-throughput platforms, proteomics has become a powerful tool to search for plant gene products of agronomic relevance. Protein extractions using multistep protocols have been shown to be effective to achieve better proteome profiles than simple, single-step extractions. These protocols are generally efficient for above ground tissues such as leaves.

View Article and Find Full Text PDF

Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs.

View Article and Find Full Text PDF

There is a widespread consensus that drought will mostly affect present and future agriculture negatively. Generating drought-tolerant crops is thus a high priority. However complicated the underlying genetic and regulatory networks for differences in plant performance under stress are, they would be reflected in straightforward differences in primary metabolites.

View Article and Find Full Text PDF

Plants respond to stress conditions through early stress-response factors (ESRF), which serve the function of stress sensing and/or signal transduction. These mainly comprise qualitative and/or quantitative flux in the redox molecules, calcium ions (Ca(2+)), phosphatidic acid, hexose sugars and phytohormones. The role of resident proteins such as phytohormone receptors and G-proteins as first messengers under stress is well established.

View Article and Find Full Text PDF