Publications by authors named "Manish Kumar Patel"

Seaweeds have proven to be nutrient-dense and are rich in antioxidants, like phenolics, flavonoids, and other essential metabolites that help to provide their medicinal benefits. Non-targeted metabolite profiling of the tropical green seaweed s showed the presence of numerous groups of contents, including sugars, essential amino acids, and fatty acids. Targeted metabolite profiling using HPLC identified 17 amino acids.

View Article and Find Full Text PDF

Enhancing carbohydrate export from source to sink tissues is considered to be a realistic approach for improving photosynthetic efficiency and crop yield. The rice sucrose transporters OsSUT1, OsSWEET11a and OsSWEET14 contribute to sucrose phloem loading and seed filling. Crucially, Xanthomonas oryzae pv.

View Article and Find Full Text PDF

In a few Southeast Asian nations, seaweeds have been a staple of the cuisine since prehistoric times. Seaweeds are currently becoming more and more popular around the world due to their superior nutritional value and medicinal properties. This is because of rising seaweed production on a global scale and substantial research on their composition and bioactivities over the past 20 years.

View Article and Find Full Text PDF

Cold is the best means of prolonging fruit storage. However, tropical fruit are susceptible to cold storage. The mode of action of mango fruit tolerance to suboptimal cold temperature of 7 or 10 °C after postharvest application of 8 mM phenylalanine was investigated using transcriptomic and metabolomic analyses of mango fruit during suboptimal cold storage.

View Article and Find Full Text PDF

Anthocyanins are secondary metabolites responsible for the red coloration of mango and apple. The red color of the peel is essential for the fruit's marketability. Anthocyanins and flavonols are synthesized via the flavonoid pathway initiated from phenylalanine (Phe).

View Article and Find Full Text PDF

Metabolomics is now considered a wide-ranging, sensitive and practical approach to acquire useful information on the composition of a metabolite pool present in any organism, including plants. Investigating metabolomic regulation in plants is essential to understand their adaptation, acclimation and defense responses to environmental stresses through the production of numerous metabolites. Moreover, metabolomics can be easily applied for the phenotyping of plants; and thus, it has great potential to be used in genome editing programs to develop superior next-generation crops.

View Article and Find Full Text PDF

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population.

View Article and Find Full Text PDF

Brown seaweeds have shown high potential of bioactivity and provide health benefits as an important functional food ingredient. Therefore, four abundantly growing tropical brown seaweeds-, , and -were collected from the Saurashtra Coast of the Arabian Sea. They were analyzed for metabolite profiling, biochemical activities (including total antioxidant, reducing, scavenging, and anti-proliferative characteristics), and total phenolic and flavonoid contents.

View Article and Find Full Text PDF

Metabolic regulation is the key mechanism implicated in plants maintaining cell osmotic potential under drought stress. Understanding drought stress tolerance in plants will have a significant impact on food security in the face of increasingly harsh climatic conditions. Plant primary and secondary metabolites and metabolic genes are key factors in drought tolerance through their involvement in diverse metabolic pathways.

View Article and Find Full Text PDF

Plants grow on soils that not only provide support for root anchorage but also act as a reservoir of water and nutrients important for plant growth and development. However, environmental factors, such as high salinity, hinder the uptake of nutrients and water from the soil and reduce the quality and productivity of plants. Under high salinity, plants attempt to maintain cellular homeostasis through the production of numerous stress-associated endogenous metabolites that can help mitigate the stress.

View Article and Find Full Text PDF

A potent cold and drought regulatory-protein encoding gene, SbCDR was cloned from an extreme halophyte Salicornia brachiata. In vitro localisation study, performed with SbCDR::RFP gene-construct revealed that SbCDR is a membrane protein. Overexpression of the SbCDR gene in tobacco plants confirmed tolerance against major environmental constraints such as salinity, drought and cold, as evidenced by improved chlorophyll contents, plant morphology, plant biomass, root length, shoot length and seed germination efficiency.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to more than 100,000 deaths in the United States. Several studies have revealed that the hyper-inflammatory response induced by SARS-CoV-2 is a major cause of disease severity and death in infected patients. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking.

View Article and Find Full Text PDF

More than 40% of harvested fruit is lost, largely due to decay. In parallel, restrictions on postharvest fungicides call for eco-friendly alternatives. Fruit's natural resistance depends mainly on flavonoids and anthocyanins-which have antioxidant and antifungal activity-synthesized from the phenylpropanoid pathway with phenylalanine as a precursor.

View Article and Find Full Text PDF

Background: Developing fruit is considered as an excellent model to study the complex network of metabolites which are altered rapidly during development.

Results: Metabolomics revealed that developing psyllium fruit is a rich source of primary metabolites (ω-3 and ω-6 fatty acids and amino-acids), secondary metabolites and natural antioxidants. Eidonomy and anatomy confirmed that psyllium fruit followed five stages of development.

View Article and Find Full Text PDF

Polysaccharides extracted from seeds and husk of psyllium were characterized for different physicochemical characteristics, and bioactivities. Extracted polysaccharides are comprised of d-xylose, l-arabinose, d-glucose, d-galactose, and l-rhamnose. Crude husk-polysaccharide was crystalline, whereas rest was amorphous in nature.

View Article and Find Full Text PDF

Fatty acids (FAs) are carboxylic acids with long aliphatic chains that may be straight, branched and saturated or unsaturated. Most of the naturally occurring plant FAs contains an even number of carbon (C4-C24). FAs are used in food and pharmacological industries due to their nutritional importance.

View Article and Find Full Text PDF

Psyllium leaves polysaccharides were physicochemically characterized and evaluated for antioxidant, free-radical scavenging and anticancer activities. The polysaccharide comprised of arabinose, rhamnose, xylose, galactose, and glucose. FTIR and NMR study exhibited the presence of key functional groups whereas morphological study revealed that crude polysaccharides are aggregates of irregular shape, non-porous, and smooth surface, while the purified products are porous and fibrous in nature.

View Article and Find Full Text PDF

Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method.

View Article and Find Full Text PDF

Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco.

View Article and Find Full Text PDF

Cumin is an annual, aromatic, herbaceous, medicinal, spice plant, most widely used as a food additive and flavoring agent in different cuisines. The study is intended to comprehensively analyse physiological parameters, biochemical composition and metabolites under salinity stress. Seed germination index, rate of seed emergence, rate of seed germination, mean germination time, plant biomass, total chlorophyll and carotenoid contents decreased concomitantly with salinity.

View Article and Find Full Text PDF

Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants.

View Article and Find Full Text PDF

Cumin is an annual herbaceous medicinally important plant having diverse applications. An efficient and reproducible method of Agrobacterium-mediated genetic transformation was herein established for the first time. A direct regeneration method without callus induction was optimised using embryos as explant material in Gamborg's B5 medium supplemented with 0.

View Article and Find Full Text PDF