Visual electrophysiology measurements are important for ophthalmic diagnostic testing. Electrodes with combined optical transparency and softness are highly desirable, and sometimes indispensable for many ocular electrophysiology measurements. Here we report the fabrication of soft graphene contact lens electrodes (GRACEs) with broad-spectrum optical transparency, and their application in conformal, full-cornea recording of electroretinography (ERG) from cynomolgus monkeys.
View Article and Find Full Text PDFRecently, direct chemical vapor deposition (CVD) growth of graphene on various types of glasses has emerged as a promising route to produce graphene glass, with advantages such as tunable quality, excellent film uniformity and potential scalability. Crucial to the performance of this graphene-coated glass is that the outstanding properties of graphene are fully retained for endowing glass with new surface characteristics, making direct-CVD-derived graphene glass versatile enough for developing various applications for daily life. Herein, recent advances in the synthesis of graphene glass, particularly via direct CVD approaches, are presented.
View Article and Find Full Text PDFThe direct growth of uniform graphene disks and their continuous film is achieved by exploiting the molten state of glass. The use of molten glass enables highly uniform nucleation and an enhanced growth rate (tenfold) of graphene, as compared to those scenarios on commonly used insulating solids. The obtained graphene glasses show promising application potentials in daily-life scenarios such as smart heating devices and biocompatible cell-culture mediums.
View Article and Find Full Text PDFDirect growth of graphene on traditional glasses is of great importance for various daily life applications. We report herein the catalyst-free atmospheric-pressure chemical vapor deposition approach to directly synthesizing large-area, uniform graphene films on solid glasses. The optical transparency and sheet resistance of such kinds of graphene glasses can be readily adjusted together with the experimentally tunable layer thickness of graphene.
View Article and Find Full Text PDF