Publications by authors named "Manish K Dwivedi"

Mosquitoes are important vectors for the transmission of several infectious diseases that lead to huge morbidity and mortality. The exhaustive use of synthetic insecticides has led to widespread resistance and environmental pollution. Using essential oils and nano-emulsions as novel insecticides is a promising alternative approach for controlling vector borne diseases.

View Article and Find Full Text PDF

The appropriate growth of the neurons, accurate organization of their synapses, and successful neurotransmission are indispensable for sensorimotor activities. These processes are highly dynamic and tightly regulated. Extensive genetic, molecular, physiological, and behavioral studies have identified many molecular candidates and investigated their roles in various neuromuscular processes.

View Article and Find Full Text PDF

Axotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss.

View Article and Find Full Text PDF

Compromised endocytosis in neurons leads to synapse overgrowth and altered organization of synaptic proteins. However, the molecular players and the signaling pathways which regulate the process remain poorly understood. Here, we show that σ2-adaptin, one of the subunits of the AP2-complex, genetically interacts with Mad, Medea and Dad (components of BMP signaling) to control neuromuscular junction (NMJ) growth in Ultrastructural analysis of mutants show an accumulation of large vesicles and membranous structures akin to endosomes at the synapse.

View Article and Find Full Text PDF

The excessive usage of antibiotics in humans and veterinary medicine has lead to the emergence of antibiotic resistance and now requires the use of novel antibiotics. There has been increased interest towards plants as source of drugs because of their pharmacological potency and long traditional usage. The aim of the current study was to evaluate bioactive components, antioxidant, and anti-inflammatory activities of the leaf extracts of Murraya paniculata, a plant traditionally used in Indian medicinal system.

View Article and Find Full Text PDF

Ethanopharmacological Relevance: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L.

View Article and Find Full Text PDF

The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that ICA69 colocalizes with α-Spectrin at the NMJ.

View Article and Find Full Text PDF

Background: Coats plus syndrome is an autosomal recessive, pleiotropic, multisystem disorder characterized by retinal telangiectasia and exudates, intracranial calcification with leukoencephalopathy and brain cysts, osteopenia with predisposition to fractures, bone marrow suppression, gastrointestinal bleeding and portal hypertension. It is caused by compound heterozygous mutations in the CTC1 gene.

Case Presentation: We encountered a case of an eight-year old boy from an Indian family with manifestations of Coats plus syndrome along with an unusual occurrence of dextrocardia and situs inversus.

View Article and Find Full Text PDF

Alexander disease (AD) is an autosomal dominant leukodystrophy which predominantly affects infants and children. The infantile form comprises the most common form of AD. It presents before two years of age and characterized by macrocephaly, psychomotor regression, spasticity, pyramidal sign, ataxia and seizures.

View Article and Find Full Text PDF

Autosomal dominant cerebellar ataxia type I is a heterogeneous group of spinocerebellar ataxias with variable neurologic presentations, with age of onset varying from infancy to adulthood. Autosomal dominant cerebellar ataxia type I is composed mainly of 3 prevalent spinocerebellar ataxia types with different pathogenic loci, specifically spinocerebellar ataxia 1 (6p24-p23), spinocerebellar ataxia 2 (12q24.1), and spinocerebellar ataxia 3 (14q32.

View Article and Find Full Text PDF