Publications by authors named "Manish Bhatt"

Background: Measurement noise often leads to inaccurate shear wave phase velocity estimation in ultrasound shear wave elastography. Filtering techniques are commonly used for denoising the shear wavefields. However, these filters are often not sufficient, especially in fatty tissues where the signal-to-noise ratio (SNR) can be very low.

View Article and Find Full Text PDF

Objective: To assess the reproducibility of six ultrasound (US)-determined shear wave (SW) viscoelastography parameters for assessment of mechanical properties of the liver in volunteers and patients with biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) or metabolic dysfunction-associated steatohepatitis (MASH).

Methods: This prospective, cross-sectional, institutional review board-approved study included 10 volunteers and 20 patients with MASLD or MASH who underwent liver US elastography twice, at least 2 weeks apart. SW speed (SWS), Young's modulus (E), shear modulus (G), SW attenuation (SWA), SW dispersion (SWD), and viscosity were computed from radiofrequency data recorded on a research US scanner.

View Article and Find Full Text PDF
Article Synopsis
  • Changes in tissue mechanical properties can indicate various diseases, and ultrasound elastography helps measure tissue stiffness through different methods like quasi-static and dynamic elastography.
  • Recent research has incorporated deep learning techniques, such as multilayered perceptrons, convolutional neural networks, and recurrent neural networks, to enhance ultrasound elastography.
  • The review discusses advancements in algorithms and clinical applications, while also addressing ongoing challenges and potential future developments in this field.
View Article and Find Full Text PDF

Ultrasound (US) shear wave (SW) elastography has been widely studied and implemented on clinical systems to assess the elasticity of living organs. Imaging of SW attenuation reflecting viscous properties of tissues has received less attention. A revisited frequency shift (R-FS) method is proposed to improve the robustness of SW attenuation imaging.

View Article and Find Full Text PDF

Nine mulard ducks that were being raised for foie gras (steatosis) production went through in vivo shear wave (SW) elastography imaging of their liver during the force-feeding period to investigate changes in liver tissue characteristics. A total of 4 imaging sessions at an interval of 3 to 4 d were conducted at the farm on each animal. Three ducks were sacrificed at the second, third, and fourth imaging sessions for histopathology analysis of all animals at these time points.

View Article and Find Full Text PDF

Shear wave elastography (speed and dispersion), local attenuation coefficient slope and homodyned-K parametric imaging were used for liver steatosis grading. These ultrasound biomarkers rely on physical interactions between shear and compression waves with tissues at both macroscopic and microscopic scales. These techniques were applied in a context not yet studied with ultrasound imaging, that is, monitoring steatosis of force-fed duck livers from pre-force-fed to foie gras stages.

View Article and Find Full Text PDF

Change in viscoelastic properties of biological tissues may often be symptomatic of a dysfunction that can be correlated to tissue pathology. Shear wave elastography is an imaging method mainly used to assess stiffness but with the potential to measure viscoelasticity of biological tissues. This can enable tissue characterization; and thus, can be used as a marker to improve diagnosis of pathological lesions.

View Article and Find Full Text PDF

Deep vein thrombosis is a common vascular disease that can lead to pulmonary embolism and death. The early diagnosis and clot age staging are important parameters for reliable therapy planning. This article presents an acoustic radiation force induced resonance elastography method for the viscoelastic characterization of clotting blood.

View Article and Find Full Text PDF

The model-based image reconstruction techniques for photoacoustic (PA) tomography require an explicit regularization. An error estimate (?2) minimization-based approach was proposed and developed for the determination of a regularization parameter for PA imaging. The regularization was used within Lanczos bidiagonalization framework, which provides the advantage of dimensionality reduction for a large system of equations.

View Article and Find Full Text PDF

Model-based image reconstruction techniques yield better quantitative accuracy in photoacoustic image reconstruction. In this work, an exponential filtering of singular values was proposed for carrying out the image reconstruction in photoacoustic tomography. The results were compared with widely popular Tikhonov regularization, time reversal, and the state of the art least-squares QR-based reconstruction algorithms for three digital phantom cases with varying signal-to-noise ratios of data.

View Article and Find Full Text PDF

The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer–Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions.

View Article and Find Full Text PDF

A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.

View Article and Find Full Text PDF

Undersea deposition of unexploded ordnance (UXO) constitutes a potential source of contamination of marine environments by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Using sediment from a coastal UXO field, Oahu Island, Hawaii, we isolated four novel aerobic RDX-degrading fungi HAW-OCF1, HAW-OCF2, HAW-OCF3 and HAW-OCF5, tentatively identified as members of Rhodotorula, Bullera, Acremonium and Penicillium, respectively. The four isolates mineralized 15-34% of RDX in 58 days as determined by liberated 14CO2.

View Article and Find Full Text PDF

Intervention research for prevention of occupational low back injuries has focused on the effects of reducing extreme torso flexion and the external moment. Little is known about prevention strategies for torso twisting and lateral bending. The objective of this study was to assess the effect of pallet distance with regard to a constant lift origin on the torso kinematics and a measure of low back disorder risk.

View Article and Find Full Text PDF

In previous studies, we found that the emerging energetic chemical, CL-20 (C6H6N12O12, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), can be degraded following its initial denitration using both aerobic and anaerobic bacteria. The C and N mass balances were not determined due to the absence of labeled starting compounds. The present study describes the degradation of the emerging contaminant by Phanerochaete chrysosporium using ring-labeled [15N]-CL-20 and [14C]-CL-20.

View Article and Find Full Text PDF

Undersea deposition of unexploded ordnance (UXO) constitutes a potential source of contamination of marine environments by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The goal of the present study was to determine microbial degradation of RDX and HMX in a tropical marine sediment sampled from a coastal UXO field in the region of Oahu Island in Hawaii. Sediment mixed cultures growing in marine broth 2216 (21 degrees C) anaerobically mineralized 69% or 57% (CO2, 25 days) of the total carbon of [UL-14 C]-RDX (100 microM) or [UL-14 C]-HMX (10 microM), respectively.

View Article and Find Full Text PDF

Groundwater (GW) from the Bitterfeld industrial region, Central Germany, is contaminated mainly with monochlorobenzene (MCB). Accordingly, current research addresses the development of feasible in situ groundwater remediation technologies. Although easily degradable under aerobic conditions, MCB persists in the essentially anaerobic Bitterfeld aquifer.

View Article and Find Full Text PDF