Developing sustainable electronics requires using materials that are either recyclable or biodegradable, without compromising on electrical performance. Here, we introduce a solution-processed biodegradable polymer blend consisting of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) and different mixtures of two biodegradable polymers, polycaprolactone (PCL) and polylactic acid (PLA). We find that controlling the ratio of components enables a reduction in semiconductor polymer loading (∼70:80% reduction) while maintaining or improving field-effect transistor performance.
View Article and Find Full Text PDFEpithelial barriers such as the skin, lung, and gut, in addition to having unique physiologic functions, are designed to preserve tissue homeostasis upon challenge with a variety of allergens, irritants, or pathogens. Both the innate and adaptive immune systems play a critical role in responding to epithelial cues triggered by environmental stimuli. However, the mechanisms by which organs sense and coordinate complex epithelial, stromal, and immune responses have remained a mystery.
View Article and Find Full Text PDFAutomation is vital to accelerating research. In recent years, the application of self-driving labs to materials discovery and device optimization has highlighted many benefits and challenges inherent to these new technologies. Successful automated workflows offer tangible benefits to fundamental science and industrial scale-up by significantly increasing productivity and reproducibility all while enabling entirely new types of experiments.
View Article and Find Full Text PDFClostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C.
View Article and Find Full Text PDFBacterial cell growth and division require the coordinated action of enzymes that synthesize and degrade cell wall polymers. Here, we identify enzymes that cleave the D-arabinan core of arabinogalactan, an unusual component of the cell wall of Mycobacterium tuberculosis and other mycobacteria. We screened 14 human gut-derived Bacteroidetes for arabinogalactan-degrading activities and identified four families of glycoside hydrolases with activity against the D-arabinan or D-galactan components of arabinogalactan.
View Article and Find Full Text PDFDynamic column breakthrough (DCB) measurements are valuable for characterizing the adsorption of gaseous species by solid sorbents and are typically used for high concentrations of adsorptives, often at elevated temperatures and pressures. However, adsorbents for the direct capture of carbon dioxide from natural air demand measurement capability at low partial pressures of CO at atmospherically relevant temperatures and pressures. We have developed a new apparatus focused on the measurement of DCB curves under typical tropospheric conditions.
View Article and Find Full Text PDFPolymer self-assembly is a powerful approach for forming nanostructures for solution-phase applications. However, polymer semiconductor assembly has primarily been driven by solvent interactions. Here, we report poly(3-hexythiophene) homopolymer assembly driven and stabilized by oxidative doping with iron (III) -toluenesulfonate in benzonitrile.
View Article and Find Full Text PDFThe widespread realization of wearable electronics requires printable active materials capable of operating at low voltages. Polymerized ionic liquid (PIL) block copolymers exhibit a thickness-independent double-layer capacitance that makes them a promising gating medium for the development of organic thin-film transistors (OTFTs) with low operating voltages and high switching speed. PIL block copolymer structure and self-assembly can influence ion conductivity and the resulting OTFT performance.
View Article and Find Full Text PDFIntroduction: Point-of-care ultrasound (POCUS) has been brought to the limelight again, with a surge in lung ultrasound in suspected COVID-19 patients. This is due to POCUS superiority over chest X-ray, equivalent efficacy to computerised tomography chest for COVID-19 diagnosis and potential minimisation of cross-infection. However, inadequate disinfection practices could make ultrasound machines a vector for disease transmission.
View Article and Find Full Text PDFPR domain-containing member 12 (PRDM12) is a key developmental transcription factor in sensory neuronal specification and survival. Patients with rare deleterious variants in are born with congenital insensitivity to pain (CIP) due to the complete absence of a subtype of peripheral neurons that detect pain. In this paper, we report two additional CIP cases with a novel homozygous variant.
View Article and Find Full Text PDFThe design and high-throughput manufacturing of thin renewable energy devices with high structural and atomic configurational stability are crucial for the fabrication of green electronics. Yet, this concept is still in its infancy. In this work, we report the extraordinary durability of thin molecular interlayered organic flexible energy devices based on chemically tuned cellulose nanofiber transparent films that outperform glass by decreasing the substrate weight by 50%.
View Article and Find Full Text PDFJ Chem Eng Data
January 2021
Binary gas-phase diffusion coefficients, of interest in physical models of atmospheric and combustion chemistry, have been measured in for the homologous series of refrigerant-related (fluoro)methanes: methane (), fluoromethane (), difluoromethane (), and trifluoromethane (). Values have been determined by reverse-flow gas chromatography, which has been previously demonstrated to provide accurate results over a wide range of temperatures. Coefficients were measured at temperatures of (300 to 550) K for all species and extending up to 650 K and 723 K for and , respectively, and down to 250 K for .
View Article and Find Full Text PDFNeurodegenerative diseases are characterized by irreversible cell damage, loss of neuronal cells and limited regeneration potential of the adult nervous system. Pluripotent stem cells are capable of differentiating into the multitude of cell types that compose the central and peripheral nervous systems and so have become the major focus of cell replacement therapies for the treatment of neurological disorders. Human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC)-derived cells have both been extensively studied as cell therapies in a wide range of neurodegenerative disease models in rodents and non-human primates, including Parkinson's disease, stroke, epilepsy, spinal cord injury, Alzheimer's disease, multiple sclerosis and pain.
View Article and Find Full Text PDFOne-step solution deposition of high-quality perovskite thin films relies heavily on a small number of antisolvents. Here, we design a simple minimum volume colorimetric solution assay to screen over 100 different solvents. We correctly identify 14 previously reported antisolvents and predict 20 novel candidates.
View Article and Find Full Text PDFSelf-assembly is an attractive strategy for organizing molecules into ordered structures that can span multiple length scales. Crystallization Driven Self-Assembly (CDSA) involves a block copolymer with a crystallizable core-forming block and an amorphous corona-forming block that aggregate into micelles with a crystalline core in solvents that are selective for the corona block. CDSA requires core- and corona-forming blocks with very different solubilities.
View Article and Find Full Text PDFNeuropathic pain causes severe suffering, and most patients are resistant to current therapies. A core element of neuropathic pain is the loss of inhibitory tone in the spinal cord. Previous studies have shown that foetal GABAergic neuron precursors can provide relief from pain.
View Article and Find Full Text PDFChronic pain afflicts as much as 50% of the population at any given time but our methods to address pain remain limited, ineffective and addictive. In order to develop new therapies an understanding of the mechanisms of painful sensitization is essential. We discuss here recent progress in the understanding of mechanisms underlying pain, and how these mechanisms are being targeted to produce modern, specific therapies for pain.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
November 2019
Nerve injury leads to devastating and often untreatable neuropathic pain. While acute noxious sensation (nociception) is a crucial survival mechanism and is conserved across phyla, chronic neuropathic pain is considered a maladaptive response owing to its devastating impact on a patient's quality of life. We have recently shown that a neuropathic pain-like response occurs in adult .
View Article and Find Full Text PDFThe spatial distribution of polymer ligands on the surface of nanoparticles (NPs) is of great importance because it determines their interactions with each other and with the surrounding environment. Phase separation in mixtures of polymer brushes has been studied for spherical NPs; however, the role of local surface curvature of nonspherical NPs in the surface phase separation of end-grafted polymer ligands remains an open question. Here, we examined phase separation in mixed monolayers of incompatible polystyrene and poly(ethylene glycol) brushes end-capping the surface of gold nanorods in a good solvent.
View Article and Find Full Text PDFInjury can lead to devastating and often untreatable chronic pain. While acute pain perception (nociception) evolved more than 500 million years ago, virtually nothing is known about the molecular origin of chronic pain. Here we provide the first evidence that nerve injury leads to chronic neuropathic sensitization in insects.
View Article and Find Full Text PDFSingle-pulse shock tubes are effective tools for measuring chemical kinetics at high temperatures, typically (900-1400) K. However, the use of a diaphragm for shock generation leads to significant shock-to-shock inconsistencies in temperature for a constant initial pressure ratio across the discontinuity. Diaphragms also require replacement after each shock and demand care in cleaning to ensure that the fragments do not contaminate the apparatus.
View Article and Find Full Text PDFThe box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and potent venom action, basic mechanistic insight is lacking. Here we perform molecular dissection of a jellyfish venom-induced cell death pathway by screening for host components required for venom exposure-induced cell death using genome-scale lenti-CRISPR mutagenesis.
View Article and Find Full Text PDFMotor Neuron Disease (MND) typically affects patients during the later stages of life, and thus, MND is having an increasingly devastating impact on diagnosed individuals, their families and society. The umbrella term MND refers to diseases which cause the progressive loss of upper and/or lower motor neurons and a subsequent decrease in motor ability such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The study of these diseases is complex and has recently involved the use of genome-wide association studies (GWAS).
View Article and Find Full Text PDFPoly(3-alkylthiophene) (P3AT) has been a central focus of research on organic photovoltaics (OPVs) for well over a decade. Due to their controlled synthesis P3ATs have proven to be a vital model system for developing an understanding of the effects of polymer structure on optoelectronic properties and blend morphology in bulk heterojunction OPVs. Similar to their thiophene counterparts, selenophene and tellurophene can be polymerized in a controlled manner.
View Article and Find Full Text PDF