Publications by authors named "Manion B"

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death.

View Article and Find Full Text PDF

Purpose: Multiple myeloma (MM) affects over 35,000 patients each year in the US. There remains a need for versatile Positron Emission Tomography (PET) tracers for the detection, accurate staging, and monitoring of treatment response of MM that have optimal specificity and translational attributes. CD38 is uniformly overexpressed in MM and thus represents an ideal target to develop CD38-targeted small molecule PET radiopharmaceuticals to address these challenges.

View Article and Find Full Text PDF

Background: Conjugation of transferrin (Tf) to imaging or nanotherapeutic agents is a promising strategy to target breast cancer. Since the efficacy of these biomaterials often depends on the overexpression of the targeted receptor, we set out to survey expression of transferrin receptor (TfR) in primary and metastatic breast cancer samples, including metastases and relapse, and investigate its modulation in experimental models.

Methods: Gene expression was investigated by datamining in twelve publicly-available datasets.

View Article and Find Full Text PDF

Background: Recent studies demonstrate that titanium dioxide nanoparticles (TiO NPs) are an effective source of reactive oxygen species (ROS) for photodynamic therapy and radionuclide stimulated dynamic therapy (RaST). Unfortunately tracking the distribution of TiO NPs noninvasively remains elusive.

Objective: Given the use of gadolinium (Gd) chelates as effective contrast agents for magnetic resonance imaging (MRI), this study aims to (1) develop hybrid TiO-Gd NPs that exhibit high relaxivity for tracking the NPs without loss of ROS generating capacity; and (2) establish a simple colorimetric assay for quantifying Gd loading and stability.

View Article and Find Full Text PDF

Plant stomata close rapidly in response to a rise in the plant hormone abscisic acid (ABA) or salicylic acid (SA) and after recognition of pathogen-associated molecular patterns (PAMPs). Stomatal closure is the result of vacuolar convolution, ion efflux, and changes in turgor pressure in guard cells. Phytopathogenic bacteria secrete type III effectors (T3Es) that interfere with plant defense mechanisms, causing severe plant disease symptoms.

View Article and Find Full Text PDF

Neurosteroids are endogenous modulators of neuronal excitability and nervous system development and are being developed as anesthetic agents and treatments for psychiatric diseases. While gamma amino-butyric acid Type A (GABAA) receptors are the primary molecular targets of neurosteroid action, the structural details of neurosteroid binding to these proteins remain ill defined. We synthesized neurosteroid analogue photolabeling reagents in which the photolabeling groups were placed at three positions around the neurosteroid ring structure, enabling identification of binding sites and mapping of neurosteroid orientation within these sites.

View Article and Find Full Text PDF

Background And Purpose: Glycine receptors are important players in pain perception and movement disorders and therefore important therapeutic targets. Glycine receptors can be modulated by the intravenous anaesthetic propofol (2,6-diisopropylphenol). However, the drug is more potent, by at least one order of magnitude, on GABA receptors.

View Article and Find Full Text PDF

Background And Purpose: Neurosteroids potentiate responses of the GABAA receptor to the endogenous agonist GABA. Here, we examined the ability of neurosteroids to potentiate responses to the allosteric activators etomidate, pentobarbital and propofol.

Experimental Approach: Electrophysiological assays were conducted on rat α1β2γ2L GABAA receptors expressed in HEK 293 cells.

View Article and Find Full Text PDF

Rationale: While neurosteroids are well-described positive allosteric modulators of gamma-aminobutyric acid type A (GABAA) receptors, the binding sites that mediate these actions have not been definitively identified.

Objectives: This study was conducted to synthesize neurosteroid analogue photolabeling reagents that closely mimic the biological effects of endogenous neurosteroids and have photochemical properties that will facilitate their use as tools for identifying the binding sites for neurosteroids on GABAA receptors.

Results: Two neurosteroid analogues containing a trifluromethyl-phenyldiazirine group linked to the steroid C11 position were synthesized.

View Article and Find Full Text PDF

A model of the alignment of neurosteroids and ent-neurosteroids at the same binding site on γ-aminobutyric acid type A (GABAA) receptors was evaluated for its ability to identify the structural features in ent-neurosteroids that enhance their activity as positive allosteric modulators of this receptor. Structural features that were identified included: (1) a ketone group at position C-16, (2) an axial 4α-OMe group, and (3) a C-18 methyl group. Two ent-steroids were identified that were more potent than the anesthetic steroid alphaxalone in their threshold for and duration of loss of the righting reflex in mice.

View Article and Find Full Text PDF

There is growing evidence that using e-learning and digital gaming technology can support students in their learning. An international project, Continuing/Higher Education in Research Methods Using Games, funded by the European Commission's Lifelong Learning Programme and led by a team at the University of the West of Scotland, aims to develop interactive activities and games to support nursing and social science students. This article looks at the scope of the project in helping to deliver nurse education.

View Article and Find Full Text PDF

Accumulated evidence suggests that neurosteroids modulate GABA(A) receptors through binding interactions with transmembrane domains. To identify these neurosteroid binding sites directly, a neurosteroid-analog photolabeling reagent, (3α,5β)-6-azi-pregnanolone (6-AziP), was used to photolabel membranes from Sf9 cells expressing high-density, recombinant, His(8)-β3 homomeric GABA(A) receptors. 6-AziP inhibited (35)S-labeled t-butylbicyclophosphorothionate binding to the His(8)-β3 homomeric GABA(A) receptors in a concentration-dependent manner (IC(50) = 9 ± 1 μM), with a pattern consistent with a single class of neurosteroid binding sites.

View Article and Find Full Text PDF

Objectives: To review previous reports as well as our institutional experience to address the issues regarding patient management and also to assess the predisposing factors that might influence outcome and survival.

Methods: We undertook a 20-year (1989-2009) retrospective study of a series of eight patients diagnosed with intramedullary spinal cord metastases (ISCMs) in our institute. We further reviewed 293 cases of ISCMs reported in the English literature since 1960.

View Article and Find Full Text PDF

The enantiomer pair androsterone and ent-androsterone are positive allosteric modulators of γ-aminobutyric acid (GABA) type A receptors. Each enantiomer was shown to bind at the same receptor site. Binding orientations of the enantiomers at this site were deduced using enantiomer pairs containing OBn substituents at either C-7 or C-11.

View Article and Find Full Text PDF

Iodine has been used as an effective tool for studying both the structure and composition of dispersed starch and starch granules. In addition to being employed to assess relative amylose contents for starch samples, it has been used to look at the molecular mobility of the glucose polymers within intact starch granules based on exposure to iodine vapor equilibrated at different water activities. Starches of different botanical origin including corn, high amylose corn, waxy corn, potato, waxy potato, tapioca, wheat, rice, waxy rice, chick pea and mung bean were equilibrated to 0.

View Article and Find Full Text PDF

Background And Purpose: GABA(A) receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABA(A) receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems.

View Article and Find Full Text PDF

Adjunctive radiation treatment of childhood intracranial neoplasms of grade II or higher creates a risk of subsequent vasculopathy. A 28-year-old male presented with a Glasgow Coma Scale 12 after acute collapse and hemiparesis with an intraparenchymal haematoma. Emergent craniotomy, histopathology and subsequent imaging confirmed the cause as radiation-induced moyamoya disease, subsequent to treatment for a grade 2 astrocytoma 24 years previously.

View Article and Find Full Text PDF

This study addresses the hypothesis that the lack of anesthetic activity for (3α,5α)-3-hydroxypregn-16-ene-11,20-dione (Δ(16)-alphaxalone) is explained by the steroid Δ(16) double bond constraining the steroid 20-carbonyl group to a position that prevents it from favorably interacting with γ-aminobutyric acid type A (GABA(A)) receptors. A series of Δ(16) and Δ(17(20)) analogues of Δ(16)-alphaxalone was prepared to evaluate this hypothesis in binding, electrophysiological, and tadpole anesthesia experiments. The results obtained failed to support the hypothesis.

View Article and Find Full Text PDF

A rapid and sensitive method for quantifying iodine in intact starch granules using gas chromatography is described with detection limits as low as 0.2% (w/w) iodine in starch. Sample preparation includes NaBH(4) reduction of the various iodine species associated with starch to the colorless soluble iodide ion, followed by its quantitative derivatization to EtI using Et(3)O(+)BF4- in CH(2)Cl(2).

View Article and Find Full Text PDF

Alphaxalone, a neuroactive steroid containing a 17β-acetyl group, has potent anesthetic activity in humans. This pharmacological activity is attributed to this steroid's enhancement of γ-amino butyric acid-mediated chloride currents at γ-amino butyric acid type A receptors. The conversion of alphaxalone into Δ(16)-alphaxalone produces an analogue that lacks anesthetic activity in humans and that has greatly diminished receptor actions.

View Article and Find Full Text PDF

In the absence of GABA, neuroactive steroids that enhance GABA-mediated currents modulate binding of [35S]t-butylbicyclophosphorothionate in a biphasic manner, with enhancement of binding at low concentrations (site NS1) and inhibition at higher concentrations (site NS2). In the current study, compound (3alpha,5beta,17beta)-3-hydroxy-18-norandrostane-17-carbonitrile (3alpha5beta-18-norACN), an 18-norsteroid, is shown to be a full agonist at site NS1 and a weak partial agonist at site NS2 in both rat brain membranes and heterologously expressed GABAA receptors. 3alpha5beta-18-norACN also inhibits the action of a full neurosteroid agonist, (3alpha,5alpha,17beta)-3-hydroxy-17-carbonitrile (3alpha5alphaACN), at site NS2.

View Article and Find Full Text PDF

We have shown that fluorescent, 7-nitro-2,1,3-benzoxadiazol-4-yl amino (NBD)-conjugated neurosteroid analogs photopotentiate GABA(A) receptor function. These compounds seem to photosensitize a modification of receptor function, resulting in long-lived increases in responses to exogenous or synaptic GABA. Here we extend this work to examine the effectiveness of different fluorophore positions, conjugations, steroid structures, and fluorophores.

View Article and Find Full Text PDF

Although the structural features of binding sites for neuroactive steroids on gamma-aminobutryic acid type A (GABA A) receptors are still largely unknown, structure-activity studies have established a pharmacophore for potent enhancement of GABA A receptor function by neuroactive steroids. This pharmacophore emphasizes the importance of the position and stereochemistry of hydrogen-bonding groups on the steroid. However, the importance of the steroid ring system in mediating hydrophobic interactions with the GABA A receptor is unclear.

View Article and Find Full Text PDF

Background And Purpose: Eupalmerin acetate (EPA) is a marine diterpene compound isolated from the gorgonian octocorals Eunicea succinea and Eunicea mammosa. The compound has been previously shown to modulate muscle-type and neuronal nicotinic acetylcholine receptors, which are inhibited in the presence of low micromolar concentrations of EPA. In this study, we examined the effect of EPA on another transmitter-gated ion channel, the GABA(A) receptor.

View Article and Find Full Text PDF