Publications by authors named "Manimekalai M Thiyagarajan"

Heterotrimeric G proteins typically localize at the cytoplasmic face of the plasma membrane where they interact with heptahelical receptors. For G protein alpha subunits, multiple membrane targeting signals, including myristoylation, palmitoylation, and interaction with betagamma subunits, facilitate membrane localization. Here we show that an additional membrane targeting signal, an N-terminal polybasic region, plays a key role in plasma membrane localization of non-myristoylated alpha subunits.

View Article and Find Full Text PDF

The G protein subunit, betagamma, plays an important role in targeting alpha subunits to the plasma membrane and is essential for binding and activation of the heterotrimer by heptahelical receptors. Mutation of residues in the N-terminal alpha-helix of alpha s and alpha q that contact betagamma in the crystal structure of alpha i reduces binding between alpha and betagamma, inhibits plasma membrane targeting and palmitoylation of the alpha subunit, and results in G proteins that fail to couple receptor activation to stimulation of effector. Overexpression of betagamma can recover this loss of signaling through Gs but not Gq.

View Article and Find Full Text PDF

Background: ZER6 is a C2H2 zinc finger transcription factor with two isoforms (p52-ZER6 and p71-ZER6), which are differentially repressed by a ligand-dependent interaction with estrogen receptor-alpha (ERalpha). We sought to determine if ZER6 proteins are expressed in ERalpha-positive breast cancer cells and if ZER6 is expressed in association with ERalpha in breast cancers.

Methods: The expression of ZER6 protein was examined by Western blot and the pattern of ZER6 expression was examined in a panel of ERalpha-positive and ERalpha-negative breast cancers using RT-PCR.

View Article and Find Full Text PDF

G protein-coupled receptor kinases (GRKs) specifically phosphorylate agonist-occupied G protein-coupled receptors at the inner surface of the plasma membrane (PM), leading to receptor desensitization. GRKs utilize a variety of mechanisms to bind tightly, and sometimes reversibly, to cellular membranes. Previous studies demonstrated the presence of a membrane binding domain in the C terminus of GRK5.

View Article and Find Full Text PDF

The heterotrimeric G protein subunit, alpha(s), can move reversibly from plasma membranes to cytoplasm in response to activation by GPCRs or activating mutations. We examined the importance of the unique N-terminus of alpha(s) in this translocation in cultured cells. alpha(s) contains a single site for palmitoylation in its N-terminus, and this was replaced by different plasma membrane targeting motifs.

View Article and Find Full Text PDF