Publications by authors named "Manikandan Subramanian"

The present study was aimed at investigating the source, quality, and quantity of organic matter and labile fraction of biochemical constituents in the surficial sediments of Arabian Sea Shoreline at Kollam, India, which gives an input into the processes associated with the subsurface geochemistry pattern. About 15 surface sediment samples were collected from the five beaches for this study during January 2021. The samples were analyzed for CHN, total organic carbon (TOC), and labile fraction such as carbohydrates (CHO), proteins (PRO), and lipids (LIP).

View Article and Find Full Text PDF

Macrophages release soluble mediators following efferocytic clearance of apoptotic cells to facilitate intercellular communication and promote the resolution of inflammation. However, whether inflammation resolution is modulated by extracellular vesicles (EVs) and vesicular mediators released by efferocytes is not known. We report that efferocyte-derived EVs express prosaposin, which binds to macrophage GPR37 to increase expression of the efferocytosis receptor Tim4 via an ERK-AP1-dependent signaling axis, leading to increased macrophage efferocytosis efficiency and accelerated resolution of inflammation.

View Article and Find Full Text PDF

Hypercholesterolemia exacerbates autoimmune response and accelerates the progression of several autoimmune disorders, but the mechanistic basis is not well understood. We recently demonstrated that hypercholesterolemia is associated with increased serum extracellular DNA levels secondary to a defect in DNase-mediated clearance of DNA. In this study, we tested whether the impaired DNase response plays a causal role in enhancing anti-nuclear antibody levels and renal immune complex deposition in an Apoe mouse model of hypercholesterolemia.

View Article and Find Full Text PDF

Atherosclerosis is a lipid-driven disease of the artery characterized by chronic non-resolving inflammation. Despite availability of excellent lipid-lowering therapies, atherosclerosis remains the leading cause of disability and death globally. The demonstration that suppressing inflammation prevents the adverse clinical manifestations of atherosclerosis in recent clinical trials has led to heightened interest in anti-inflammatory therapies.

View Article and Find Full Text PDF

Atherosclerosis is a chronic lipid-driven inflammatory condition of the arteries and is a leading cause of stroke, myocardial infarction, and other peripheral arterial diseases. Plant products rich in polyphenols such as pomegranate juice and peel extract are known to have beneficial effects in suppressing atherogenesis. However, the mechanism of action and its effect on advanced atherosclerosis progression which results in adverse clinical outcomes are not well understood.

View Article and Find Full Text PDF

Objective: Hypercholesterolemia-induced NETosis and accumulation of neutrophil extracellular traps (NETs) in the atherosclerotic lesion exacerbates inflammation and is causally implicated in plaque progression. We investigated whether hypercholesterolemia additionally impairs the clearance of NETs mediated by endonucleases such as DNase1 and DNase1L3 and its implication in advanced atherosclerotic plaque progression. Approach and Results: Using a mouse model, we demonstrate that an experimental increase in the systemic level of NETs leads to a rapid increase in serum DNase activity, which is critical for the prompt clearance of NETs and achieving inflammation resolution.

View Article and Find Full Text PDF

The tumor microenvironment is immunosuppressive. Here we preview two recent studies from Ma et al. (2021) in Cell Metabolism and Xu et al.

View Article and Find Full Text PDF

Phagocytic clearance of dead cells and debris is critical for inflammation resolution and maintenance of tissue homeostasis. Consequently, defective clearance of dead cells and debris is associated with initiation and exacerbation of several autoimmune disorders and chronic inflammatory diseases such as atherosclerosis. The progressive loss of dead cell clearance capacity within the atherosclerotic plaque leads to accumulation of necrotic cells, chronic non-resolving inflammation, and expansion of the necrotic core, which triggers atherosclerotic plaque rupture and clinical manifestation of acute thrombotic cardiovascular adverse events.

View Article and Find Full Text PDF

To understand the spread of SARS-CoV2, in August and September 2020, the Council of Scientific and Industrial Research (India) conducted a serosurvey across its constituent laboratories and centers across India. Of 10,427 volunteers, 1058 (10.14%) tested positive for SARS-CoV2 anti-nucleocapsid (anti-NC) antibodies, 95% of which had surrogate neutralization activity.

View Article and Find Full Text PDF

Tyro3, AXL, and MerTK (TAM) receptors are activated in macrophages in response to tissue injury and as such have been proposed as therapeutic targets to promote inflammation resolution during sterile wound healing, including myocardial infarction. Although the role of MerTK in cardioprotection is well characterized, the unique role of the other structurally similar TAMs, and particularly AXL, in clinically relevant models of myocardial ischemia/reperfusion infarction (IRI) is comparatively unknown. Utilizing complementary approaches, validated by flow cytometric analysis of human and murine macrophage subsets and conditional genetic loss and gain of function, we uncover a maladaptive role for myeloid AXL during IRI in the heart.

View Article and Find Full Text PDF

Continual efferocytic clearance of apoptotic cells (ACs) by macrophages prevents necrosis and promotes injury resolution. How continual efferocytosis is promoted is not clear. Here, we show that the process is optimized by linking the metabolism of engulfed cargo from initial efferocytic events to subsequent rounds.

View Article and Find Full Text PDF

Regulatory T (Treg) cell responses and apoptotic cell clearance (efferocytosis) represent critical arms of the inflammation resolution response. We sought to determine whether these processes might be linked through Treg-cell-mediated enhancement of efferocytosis. In zymosan-induced peritonitis and lipopolysaccharide-induced lung injury, Treg cells increased early in resolution, and Treg cell depletion decreased efferocytosis.

View Article and Find Full Text PDF

Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans.

View Article and Find Full Text PDF

Colony stimulating factors (CSFs) play a central role in the development and functional maturation of immune cells besides having pleiotropic effects on cells of the vascular wall. The production of CSFs is induced by multiple atherogenic and inflammatory stimuli and their expression levels are often correlated positively with advanced atherosclerotic plaques and adverse cardiovascular events in humans suggesting that CSFs play a critical role in the pathophysiology of atherosclerosis progression. Interestingly, recombinant CSFs as well as anti-CSFs are being increasingly used for diverse clinical indications.

View Article and Find Full Text PDF

Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) prevents post-apoptotic necrosis and dampens inflammation. Defective efferocytosis drives important diseases, including atherosclerosis. For efficient efferocytosis, phagocytes must be able to internalize multiple ACs.

View Article and Find Full Text PDF

AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl or wild-type mice were transplanted into lethally irradiated Ldlr mice.

View Article and Find Full Text PDF

The acute inflammatory response requires a coordinated resolution program to prevent excessive inflammation, repair collateral damage, and restore tissue homeostasis, and failure of this response contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated in part by long-chain fatty acid-derived lipid mediators called specialized proresolving mediators (SPMs). However, how SPMs are regulated during the inflammatory response, and how this process goes awry in inflammatory diseases, are poorly understood.

View Article and Find Full Text PDF

Inflammation is an essential protective biological response involving a coordinated cascade of signals between cytokines and immune signaling molecules that facilitate return to tissue homeostasis after acute injury or infection. However, inflammation is not effectively resolved in chronic inflammatory diseases such as atherosclerosis and can lead to tissue damage and exacerbation of the underlying condition. Therapeutics that dampen inflammation and enhance resolution are currently of considerable interest, in particular those that temper inflammation with minimal host collateral damage.

View Article and Find Full Text PDF

Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells.

View Article and Find Full Text PDF

Nitric oxide (NO) has been shown to be effective in cancer chemoprevention and therefore drugs that help generate NO would be preferable for combination chemotherapy or solo use. This study shows a new evidence of NO as a mediator of acute leukemia cell death induced by fisetin, a promising chemotherapeutic agent. Fisetin was able to kill THP-1 cells in vivo resulting in tumor shrinkage in the mouse xenograft model.

View Article and Find Full Text PDF

Rationale: Granulocyte macrophage colony-stimulating factor (GM-CSF, Csf2) is a growth factor for myeloid-lineage cells that has been implicated in the pathogenesis of atherosclerosis and other chronic inflammatory diseases. However, the role of GM-CSF in advanced atherosclerotic plaque progression, the process that gives rise to clinically dangerous plaques, is unknown.

Objective: To understand the role of GM-CSF in advanced atherosclerotic plaque progression.

View Article and Find Full Text PDF

Objective: Coronary heart disease is associated with monocytosis. Studies using animal models of monocytosis and atherosclerosis such as ApoE(-/-) mice have shown bone marrow (BM) hematopoietic stem and multipotential progenitor cell (HSPC) expansion, associated with increased cell surface expression of the common β subunit of the granulocyte macrophage colony-stimulating factor/interleukin-3 receptor (CBS) on HSPCs. ApoE(-/-) mice also display increased granulocyte macrophage colony-stimulating factor-dependent monocyte production in the spleen.

View Article and Find Full Text PDF

Hyperactivity of a branch of the unfolded protein response in CD8α dendritic cells degrades endoplasmic reticulum–associated mRNAs, which leads to a defect in the cross-presentation of dead cell–derived antigens.

View Article and Find Full Text PDF

The phagocytosis of apoptotic cells (ACs), or efferocytosis, by DCs is critical for self-tolerance and host defense. Although many efferocytosis-associated receptors have been described in vitro, the functionality of these receptors in vivo has not been explored in depth. Using a spleen efferocytosis assay and targeted genetic deletion in mice, we identified a multiprotein complex--composed of the receptor tyrosine kinase AXL, LDL receptor-related protein-1 (LRP-1), and RAN-binding protein 9 (RANBP9)--that mediates DC efferocytosis and antigen cross-presentation.

View Article and Find Full Text PDF