Peptidylarginine deiminase type4 (PAD4) is a pivotal pro-inflammatory protein within the human immune system, intricately involved in both inflammatory processes and immune responses. Its role extends to the generation of diverse immune cell types, including T cells, B cells, natural killer cells, and dendritic cells. PAD4 has recently garnered attention due to its association with a spectrum of inflammatory and autoimmune disorders, notably rheumatoid arthritis (RA).
View Article and Find Full Text PDFDue to its emerging resistance to first-line anti-TB medications, tuberculosis (TB) is one of the most contagious illness in the world. According to reports, the effectiveness of treating TB is severely impacted by drug resistance, notably resistance caused by mutations in the pncA gene-encoded pyrazinamidase (PZase) to the front-line drug pyrazinamide (PZA). The present study focused on investigating the resistance mechanism caused by the mutations D12N, T47A, and H137R to better understand the structural and molecular events responsible for the resistance acquired by the pncA gene of Mycobacterium tuberculosis (MTB) at the structural level.
View Article and Find Full Text PDFThe biosynthetic arginine decarboxylase in is responsible for producing spermidine, a polyamine with numerous biological applications in humans. The arginine decarboxylase has significant applications in biotechnology industries, suggesting the need to evaluate its biochemical and biophysical characteristics at the molecular level. In this study, both and methods were employed to investigate the structural and functional behavior of the arginine decarboxylase protein.
View Article and Find Full Text PDFSeveral factors are associated with the emergence of drug resistance mechanisms, such as impermeable cell walls, gene mutations, and drug efflux systems. Consequently, bacteria acquire resistance, leading to a decrease in drug efficacy. A new and innovative strategy is required to combat drug resistance in tuberculosis (TB) effectively.
View Article and Find Full Text PDFThe two most serious global health challenges confronting human society today are autoimmune disorders (AIDs) and neurological diseases (NDs), both of which shorten people's lives and worsen the situation. Despite their extensive impact, statistics show that AIDs is associated with a higher risk of ND. Circular RNAs (circRNAs) are critical in several illnesses and disorders, especially AID and ND.
View Article and Find Full Text PDFTuberculosis (TB) is a lethal multisystem disease that attacks the lungs' first line of defense. A substantial threat to public health and a primary cause of death is pulmonary TB. This study aimed to identify and investigate the probable differentially expressed genes (DEGs) primarily involved in Pulmonary TB.
View Article and Find Full Text PDFCytochrome P450 oxidoreductase (POR) protein is essential for steroidogenesis, and gene mutations are frequently associated with P450 Oxidoreductase Deficiency (PORD), a disorder of hormone production. To our knowledge, no previous attempt has been made to identify and analyze the deleterious/pathogenic non-synonymous single nucleotide polymorphisms (nsSNPs) in the human POR gene through an extensive computational approach. Computational algorithms and tools were employed to identify, characterize, and validate the pathogenic SNPs associated with certain diseases.
View Article and Find Full Text PDFGrowing concern about the difficulty in diagnosis and treatments of drug-resistant tuberculosis falls under the major global health issues. There is an urgent need for finding novel strategies to develop drugs or bioactive molecules against the global threat of Mycobacterium tuberculosis (MTB). Isoniazid (INH) is a front line drug against tuberculosis; it primarily targets the enoyl-acyl carrier protein reductase (InhA), a potent drug target in the mycolic acid pathway of MTB.
View Article and Find Full Text PDFCytochrome P450 oxidoreductase (POR) is a steroidogenic and drug-metabolizing enzyme. It helps in the NADPH dependent transfer of electrons to cytochrome P450 (CYP) enzymes for their biological activity. In this study, we employed integrative computational approaches to decipher the impact of proline to leucine missense mutation at position 384 (P384L) in the connecting/hinge domain region which is essential for the catalytic activity of POR.
View Article and Find Full Text PDFThe enzyme β-Ketoacyl ACP synthase I (KasA) is a potent drug target in mycolic acid pathway of Mycobacterium tuberculosis (Mtb). In the present study, we investigated the structural dynamics of wild-type (WT) and mutants KasA (D66N, G269S, G312S, and F413L) in both monomer and dimer form to provide insight into protein structural stability. To gain better understanding of structural flexibility of KasA, combined molecular dynamics and essential dynamics were employed to analyze the conformational changes induced by non-active site mutations.
View Article and Find Full Text PDFBackground & Objectives: It is well reported that exhaled CO 2 and skin odour from human being assist female mosquitoes to locate human host. Basically, the receptors for this activity are expressed in cpA neurons. In both Aedes aegypti and Anopheles gambiae, this CO 2-sensitive olfactory neuron detects myriad number of chemicals present in human skin.
View Article and Find Full Text PDFARHI, a putative tumor suppressor protein with unique 32 amino acid extension in the N-terminal region, differs from oncogenes Ras and Rap, negatively regulates STAT3 signaling and inhibits the migration of ovarian cancer cells. ARHI associates directly with STAT3, also forms complex with importinβ, and prevents formation of RanGTPase-importinβ complex, which is essential for transporting STAT3 into the nucleus. Hence, the structural aspects pertaining to ARHI mediated inhibition of STAT3 translocation can provide hints on the regulation of STAT3 signaling mechanism.
View Article and Find Full Text PDF