Dispersive dielectric multilayer mirrors, high-dispersion chirped mirrors in particular, are widely used in modern ultrafast optics to manipulate spectral chirps of ultrashort laser pulses. Dispersive mirrors are routinely designed for dispersion compensation in ultrafast lasers and are assumed to be linear optical components. In this work, we report the experimental characterization of an unexpectedly strong nonlinear response in these chirped mirrors.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2017
Organogels prepared from AOT/4-chlorophenol/m-xylene are immobile in the macroscopic sense, with a well-characterized internal structure. However, the molecular level dynamics inside the gels is not too clear, although a very slow structural relaxation has been reported previously. Using a set of rod-like fluorophores, we find that the rotational mobility of a small guest molecule inside the gel can be extremely fast, indicating presence of sufficiently low-microviscosity domains.
View Article and Find Full Text PDFStable, fluorescent Ag nanoclusters were prepared in aqueous solutions of Na(+) salt of the carboxylate-rich polymer poly(acrylic acid-co-maleic acid) under brief spells of UV irradiation. The nanoclusters were nearly spherical, with diameters within 1.90 ± 0.
View Article and Find Full Text PDFPhotochem Photobiol Sci
February 2015
Molecular mobility of the symmetric carbocyanine fluorophore DTDCI was studied in AOT/alkane reverse micelles containing non-aqueous polar liquids DMF, formamide, ethylene glycol and glycerol by monitoring both the torsional photoisomerization and rotational reorientation, both of which were sensitive to microviscosity of the local environment. The DTDCI fluorophore resides completely within the AOT-polar liquid reverse micelle nano-droplets, where its dynamics were found to be significantly retarded irrespective of the polar liquid taken, due to a combination of electrostatic and hydrophobic forces that induce the guest DTDC(+) cation to attach to the AOT molecules of the host droplet. The addition of strong hydrogen-bond donating polar liquids like formamide, ethylene glycol and glycerol causes a systematic enlargement of the droplets.
View Article and Find Full Text PDF