Channelization and branching patterns frequently appear in porous structures as a result of fluid-flow-mediated erosion, which causes spatiotemporal changes in the medium. However, most studies on electrokinetic effects in porous media focus on the overall impact of the electric field on electrical double-layer formation in micropores and its influence on ionic transport, without addressing the spatiotemporal erosive characteristics and resulting porosity distribution. In this study, we explore the interplay between flow-induced shear stress and an external electric field on the dynamic evolution of porosity in deformable porous media using semi-analytical modeling.
View Article and Find Full Text PDFIn this article, we demonstrate the solution methodology of start-up electrokinetic flow of non-Newtonian fluids in a microfluidic channel having square cross-section using Spreadsheet analysis tool. In order to incorporate the rheology of the non-Newtonian fluids, we take into consideration the Ostwald-de Waele power law model. By making a comprehensive discussion on the implementation details of the discretized form of the transport equations in Spreadsheet analysis tool, and establishing the analytical solution for a special case of the start-up flow, we compare the results both during initial transience as well as in case of steady-state scenario.
View Article and Find Full Text PDFElectrophoresis
December 2021
We discuss, in this article, the solution method of the unsteady electroosmotic flow of Newtonian fluid in a square microfluidic channel cross-section in the framework of spreadsheet analysis. We demonstrate the implementation of the finite difference scheme, which is used for the discretization of the transport equations governing the flow dynamics of the present problem, in the spreadsheet tool. Also, we have shown the implementation details of different boundary conditions, which are typically used for the underlying electrohydrodynamics in a microfluidic channel, in the spreadsheet analysis tool.
View Article and Find Full Text PDF