Spectrochim Acta A Mol Biomol Spectrosc
February 2025
This study characterizes the steroidal saponin diosgenin by theoretical and experimental spectroscopic techniques. Theoretical simulations were performed using the DFT/B3LYP/6-311++G(d,p) basis set to simulate spectroscopic, structural and other properties. Optimized geometries from simulations and experiments showed strong agreement, with R value of 0.
View Article and Find Full Text PDFThe rapid emergence of antibiotic-resistant microorganisms and the demand for sustainable water purification methods have spurred research into advanced disinfection, with photocatalysis as a promising approach. This study explores magnetic nanomaterials as catalysts in photocatalytic processes for microorganism inactivation. Magnetic nanoparticles and composites, due to their unique properties, are promising for enhancing photocatalytic disinfection.
View Article and Find Full Text PDFInorganic arsenic (As), a known carcinogen and major contaminant in drinking water, affects over 140 million people globally, with levels exceeding the World Health Organization's (WHO) guidelines of 10 μg L. Developing innovative technologies for effluent handling and decontaminating polluted water is critical. This paper summarizes the fundamental characteristics of chitosan-embedded composites for As adsorption from water.
View Article and Find Full Text PDFChemosphere
September 2024
4-aminophenol (AP), an aromatic phenolic compound, is commonly found in commercial products that eventually enter and pollute environmental water sources. The precise detection and quantification of AP in environmental samples are critical for comprehensively assessing contamination levels, safeguarding public health, and formulating effective remediation strategies. In the shed of light, this work proposes an electrochemical sensing platform for detecting and quantifying AP using Araucaria heterophylla biomass-derived activated carbon (AH-AC) prepared via the SC-CO pathway.
View Article and Find Full Text PDFChitosan (CS) polysaccharide is expected to exhibit greater ionic conductivity, which can be attributed to its increased amino group content when it is blended with different semiconducting materials. Herein, the work used this conducting ability of chitosan and prepared a heterogeneous MoS-induced magnetic chitosan (MF@CS) composite via the co-precipitation method, which was used to scrutinize the catalytic performance with Methylene Blue (MB) and Malachite Green (MG) dyes by visible light irradiation. The saturation magnetization value of the MF@CS composite is found to be 7.
View Article and Find Full Text PDFThe study involves a collection of data from the published article titled "Active sites engineered biomass-carbon as a catalyst for biodiesel production: Process optimization using RSM and life cycle assessment "" journal. Here, the activated biochar was functionalized using 4-diazoniobenzenesulfonate to obtain sulfonic acid functionalized activated biochar. The catalyst was comprehensively characterized using XRD, FTIR, TGA, NH-TPD, SEM-EDS, TEM, BET, and XPS analysis.
View Article and Find Full Text PDFThe escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2024
Inspired by the waste-to-wealth concept, we have recovered the gamma phase aluminium oxide nanoparticles (γ-AlO NPs) from waste aluminium (Al) foils and fabricated a composite with Dracaena trifasciata biomass-derived activated carbon matrix (DT-AC) using supercritical carbon-di-oxide (SC-CO) pathway. The prepared samples are characterized altogether by various micro- and spectroscopic analyses. Based on the results, the recovered γ-AlO NPs are well impregnated in the DT-AC surface by the action of the microbubble effect from the SC-CO.
View Article and Find Full Text PDFWhile formamidinium lead iodide (FAPbI) halide perovskite (HP) exhibits improved thermal stability and a wide band gap, its practical applicability is chained due to its room temperature phase transition from pure black (α-phase) to a non-perovskite yellow (δ-phase) when exposed to humidity. This phase transition is due to the fragile ionic bonding between the cationic and anionic parts of HPs during their formation. Herein, we report the synthesis of water-stable, red-light-emitting α-phase FAPbI nanocrystals (NCs) using five different amines to overcome these intrinsic phase instabilities.
View Article and Find Full Text PDFThis study assesses the risk due to Emerging Contaminants (ECs), present in Indian rivers - Ganga (650 million inhabitants), Yamuna (57 million inhabitants), and Musi (7,500,000 inhabitants), 13 ECs in total, have been used for risk assessment studies. Their concentrations (e.g.
View Article and Find Full Text PDFNatural carbon dots (NCQDs) are expediently significant in the photo-, nano- and biomedical spheres owing to their facile synthesis, optical and physicochemical attributes. In the present study, three NCQDs are prepared and optimized from Withania somnifera (ASH) by one-step hydrothermal (bottom-up) method: HASHP (without dopant), nitrogen doped HASHNH (surface passivation using ammonia) and HASHEDA (surface passivation with ethylenediamine). The HR-TEM images reveal that HASHP, HASNH, HASHEDA are spherically shaped with 2.
View Article and Find Full Text PDFLuminescent carbon dots have gained significant attention in various fields due to their unique optical properties and potential applications. Here, the study was aimed to propose a novel and sustainable approach for the synthesis of luminescent carbon dots (ICDs) using IV (Intravenous) medical bag waste. The ICDs were synthesized through a facile and cost-effective method that involved the carbonization of IV bag waste followed by surface functionalization with chitosan.
View Article and Find Full Text PDFIn this study, we performed the physicochemical and electrochemical characterization of a decorated macrocyclic aluminium(iii) phthalocyanine complex (AlTMQNCAPc). Subsequently, the AlTMQNCAPc@MWCNT/GC electrode was used for the electrochemical detection of glucose and hydrogen peroxide (HO) by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA). Moreover, the limit of detection, linear range, and sensitivity for glucose and HO were investigated (CV: 2.
View Article and Find Full Text PDFPhotocatalysis is one of the fascinating fields for the wastewater treatment. In this regard, the present study deals with an effective visible light active BiYO/g-CN heterojunction nanocomposite photocatalyst with various ratios of BiYO and g-CN (1:3, 1:1 and 3:1), synthesised by a wet chemical approach. The as-synthesised nanocomposite photocatalysts were investigated via different physicochemical approaches like Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electrons microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and photoelectrochemical studies to characterise the crystal structure, morphology, optical absorption characteristics and photoelectrochemical properties.
View Article and Find Full Text PDFTo produce xylo-oligosaccharides (XOS) from the agriculture waste, which included, green coconut and vegetable cocktail. The two pretreatment - hydrogen peroxide-acetic acid (HP-AC) and sodium hypochlorite-sodium hydroxide (SH-SH) - were used for this study. The optimal conditions for the pretreatment were 80 °C, 4.
View Article and Find Full Text PDFA novel FeMoO/g-CN-2D/2D Z-scheme heterojunction photocatalyst was prepared via wet chemical method. The observed structural morphology of FeMoO/g-CN reveals the 2D-iron molybdate (FeMoO) nanoplates compiled with the 2D-graphitic carbon nitride (g-CN) nanosheets like structure. The photocatalytic activity of the g-CN, FeMoO, and FeMoO/g-CN composites were studied via the degradation of Rhodamine B (RhB) as targeted textile dye under visible light irradiation (VLI).
View Article and Find Full Text PDFExcess sludge produced from biological wastewater treatment plant in petroleum industry is a kind of hazardous solid waste. Converting the sludge into biochar catalysts may help to reduce its environmental risk, recover resources and increase economic efficiency. However, the role of the sludge biochar in persulfate activation remains unclear, limiting its application in removing organic pollutants from water body.
View Article and Find Full Text PDFThe main objective of this review is to provide up to date, brief, irrefutable, organized data on the conducted experiments on a range of emerging recalcitrant compounds such as Diclofenac (DCF), Chlorophenols (CPs), tetracycline (TCs), Triclosan (TCS), Bisphenol A (BPA) and Carbamazepine (CBZ). These compounds were selected from the categories of pharmaceutical contaminants (PCs), endocrine disruptors (EDs) and personal care products (PCPs) on the basis of their toxicity and concentration retained in the environment. In this context, detailed mechanism of laccase mediated degradation has been conversed that laccase assisted degradation occurs by one electron oxidation involving redox potential as underlying element of the process.
View Article and Find Full Text PDFAgrowaste sources can be utilized to produce biogas by anaerobic digestion reaction. Fossil fuels have damaged the environment, while the biogas rectifies the issues related to the environment and climate change problems. Techno-economic analysis of biogas production is followed by nutrient recycling, reducing the greenhouse gas level, biorefinery purpose, and global warming effect.
View Article and Find Full Text PDFModernization and industrialization has undoubtedly revolutionized the food and agro-industrial sector leading to the drastic increase in their productivity and marketing thereby accelerating the amount of agro-industrial food waste generated. In the past few decades the potential of these agro-industrial food waste to serve as bio refineries for the extraction of commercially viable products like organic acids, biochemical and biofuels was largely discussed and explored over the conventional method of disposing in landfills. The sustainable development of such strategies largely depends on understanding the techno economic challenges and planning for future strategies to overcome these hurdles.
View Article and Find Full Text PDFVisible light active 1D/2D-NiMoO/BiOI nanocomposite photocatalyst has been constructed by single step solvothermal method. Various compositions of NiMoO/BiOI nanocomposites are prepared by loading different amounts of nickel molybdate (NiMoO) (1, 2, 3 wt%) to the bismuth oxy iodide (BiOI) and investigated by XRD, FTIR, SEM, EDAX, TEM, UV-vis DRS, and PL analysis. Among the as-prepared photocatalysts, 1 wt% NiMoO incorporated BiOI (NMBI-1) showed superior photocatalytic activity with a rate constant of 0.
View Article and Find Full Text PDFPhotothermal (PT)-enhanced Fenton-based chemodynamic therapy (CDT) has attracted a significant amount of research attention over the last five years as a highly effective, safe, and tumor-specific nanomedicine-based therapy. CDT is a new emerging nanocatalyst-based therapeutic strategy for the treatment of tumors via the Fenton reaction or Fenton-like reaction, which has got fast progress in recent years because of its high specificity and activation by endogenous substances. A variety of multifunctional nanomaterials such as metal-, metal oxide-, and metal-sulfide-based nanocatalysts have been designed and constructed to trigger the Fenton or Fenton-like reaction within the tumor microenvironment (TME) to generate highly cytotoxic hydroxyl radicals (•OH), which is highly efficient for the killing of tumor cells.
View Article and Find Full Text PDF