Publications by authors named "Manicacci D"

MADS-box transcription factors are important regulators of floral organ identity through their binding to specific motifs, termed CArG, in the promoter of their target genes. Petal initiation and development depend on class A and B genes, but MADS-box genes of the APETALA3 (AP3) clade are key regulators of this process. In the early diverging eudicot Nigella damascena, an apetalous [T] morph is characterized by the lack of expression of the NdAP3-3 gene, with its expression being petal-specific in the wild-type [P] morph.

View Article and Find Full Text PDF
Article Synopsis
  • Petal identity is linked to the APETALA3 (AP3) gene lineage, but it’s unclear how this gene network is conserved across different species with petals from various evolutionary backgrounds.
  • This study explored the gene regulatory network related to petals in the Ranunculaceae family by analyzing the gene expression differences between wild-type and mutant plants at early developmental stages.
  • Findings indicated that, despite different evolutionary origins, a small group of conserved genes is involved in determining petal identity and development across both Ranunculaceae and core eudicots.
View Article and Find Full Text PDF

In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed.

View Article and Find Full Text PDF

Phenotypic changes in plants can be observed along many environmental gradients and are determined by both environmental and genetic factors. The identification of alleles associated with phenotypic variations is a rapidly developing area of research. We studied the genetic basis of phenotypic variations in 11 populations of wild pearl millet (Pennisetum glaucum) on two North-South aridity gradients, one in Niger and one in Mali.

View Article and Find Full Text PDF

Spatially varying selection triggers differential adaptation of local populations. Here, we mined the determinants of local adaptation at the genomewide scale in the two closest maize wild relatives, the teosintes Zea mays ssp parviglumis and ssp. mexicana.

View Article and Find Full Text PDF

Little is known about the factors driving within species Genome Size (GS) variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt.

View Article and Find Full Text PDF

Background: Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families.

View Article and Find Full Text PDF

Flower architecture mutants provide a unique opportunity to address the genetic origin of flower diversity. Here we study a naturally occurring floral dimorphism in Nigella damascena (Ranunculaceae), involving replacement of the petals by numerous sepal-like and chimeric sepal/stamen organs. We performed a comparative study of floral morphology and floral development, and characterized the expression of APETALA3 and PISTILLATA homologs in both morphs.

View Article and Find Full Text PDF

Recent progress in genotyping and resequencing techniques have opened new opportunities for deciphering quantitative trait variation by looking for associations between traits of interest and polymorphisms in panels of diverse inbred lines. Association mapping raises specific issues related to the choice of appropriate (i) panels and marker-densities and (ii) statistical methods to capture associations. In this study, we used a panel of 314 maize inbred lines from the dent pool, composed of inbred material from public institutes (113 inbred lines) and a private company (201 inbred lines).

View Article and Find Full Text PDF

Background And Aims: ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch biosynthesis. In the green plant lineage, it is composed of two large (LSU) and two small (SSU) sub-units encoded by paralogous genes, as a consequence of several rounds of duplication. First, our aim was to detect specific patterns of molecular evolution following duplication events and the divergence between monocotyledons and dicotyledons.

View Article and Find Full Text PDF

Maize domestication from teosinte (Zea mays ssp. parviglumis) was accompanied by an increase of kernel size in landraces. Subsequent breeding has led to a diversification of kernel size and starch content among major groups of inbred lines.

View Article and Find Full Text PDF

Association genetics is a powerful method to track gene polymorphisms responsible for phenotypic variation, since it takes advantage of existing collections and historical recombination to study the correlation between large genetic diversity and phenotypic variation. We used a collection of 375 maize (Zea mays ssp. mays) inbred lines representative of tropical, American, and European diversity, previously characterized for genome-wide neutral markers and population structure, to investigate the roles of two functionally related candidate genes, Opaque2 and CyPPDK1, on kernel quality traits.

View Article and Find Full Text PDF

Background: Horizontal transfers (HTs) refer to the transmission of genetic material between phylogenetically distant species. Although most of the cases of HTs described so far concern genes, there is increasing evidence that some involve transposable elements (TEs) in Eukaryotes. The availability of the full genome sequence of two cereal species, (i.

View Article and Find Full Text PDF

We focused on a region encompassing a major maize domestication locus, Tb1, and a locus involved in the flowering time variation, Dwarf8 (D8), to investigate the consequences of two closely linked selective sweeps on nucleotide variation and gain some insights into maize geographical diffusion, through climate adaptation. First, we physically mapped D8 at approximately 300 kb 3' of Tb1. Second, we analyzed patterns of nucleotide variation at Tb1, D8, and seven short regions (400-700 bp) located in the Tb1-D8 region sequenced on a 40 maize inbred lines panel encompassing early-flowering temperate and late-flowering tropical lines.

View Article and Find Full Text PDF

An association study conducted on 375 maize inbred lines indicates a strong relationship between Vgt1 polymorphisms and flowering time, extending former quantitative trait loci (QTL) mapping results. Analysis of allele frequencies in a landrace collection supports a key role of Vgt1 in maize altilatitudinal adaptation.

View Article and Find Full Text PDF

In Zea mays L., we studied the molecular evolution of Shrunken2 (Sh2), a gene that encodes the large subunits of a major enzyme in endosperm starch biosynthesis, ADP-glucose pyrophosphorylase. We compared 4669 bp of the Sh2 coding region on 50 accessions of maize and teosinte.

View Article and Find Full Text PDF

To investigate the genetic basis of maize adaptation to temperate climate, collections of 375 inbred lines and 275 landraces, representative of American and European diversity, were evaluated for flowering time under short- and long-day conditions. The inbred line collection was genotyped for 55 genomewide simple sequence repeat (SSR) markers. Comparison of inbred line population structure with that of landraces, as determined with 24 SSR loci, underlined strong effects of both historical and modern selection on population structure and a clear relationship with geographical origins.

View Article and Find Full Text PDF

The Opaque-2 gene (O2) in maize encodes a transcriptional activator that controls the expression of various genes during kernel development, particularly some of the most abundant endosperm storage protein genes. Compared to its wild relative teosinte, maize has bigger and heavier kernels, with an increased proportion of starch and an altered distribution of the various storage protein categories. The molecular evolution of the O2 gene was investigated in connection with its possible involvement in the domestication process.

View Article and Find Full Text PDF

ADPglucose, the essential substrate for starch synthesis, is synthesized in maize by a pathway involving at least invertases, sucrose synthase, and ADPglucose pyrophosphorylase, as shown by the starch-deficient mutants, mn1, sh1, and bt2 or sh2, respectively. To improve understanding of the relationship between early grain-filling traits and carbohydrate composition in mature grain, QTLs linked to soluble invertase, sucrose synthase, and ADPglucose pyrophosphorylase activities and to starch, sucrose, fructose, and glucose concentrations were investigated. In order to take into account the specific time-course of each enzyme activity during grain filling, sampling was carried out at three periods (15, 25, and 35 d after pollination) on 100 lines from a recombinant inbred family, grown in the field.

View Article and Find Full Text PDF

Polymorphisms within three candidate genes for lignin biosynthesis were investigated to identify alleles useful for the improvement of maize digestibility. The allelic diversity of two caffeoyl-CoA 3-O-methyltransferase genes, CCoAOMT2 and CCoAOMT1, as well as that of the aldehyde O-methyltransferase gene, AldOMT, was evaluated for 34 maize lines chosen for their varying degrees of cell wall digestibility. Frequency of nucleotide changes averaged one SNP every 35 bp.

View Article and Find Full Text PDF

Background: Polymorphisms were investigated within the ZmPox3 maize peroxidase gene, possibly involved in lignin biosynthesis because of its colocalization with a cluster of QTL related to lignin content and cell wall digestibility. The purpose of this study was to identify, on the basis of 37 maize lines chosen for their varying degrees of cell wall digestibility and representative of temperate regions germplasm, ZmPox3 haplotypes or individual polymorphisms possibly associated with digestibility.

Results: Numerous haplotypes with high diversity were identified.

View Article and Find Full Text PDF

There are few convincing examples of genetic drift at loci under selection in natural populations. The plant sexual polymorphism tristyly provides an opportunity to investigate genetic drift because stochastic processes interacting with frequency-dependent selection give rise to a diagnostic pattern of morph-frequency variation. A previous study of 102 Ontario populations of the introduced tristylous wetland herb Lythrum salicaria provided evidence for the role of stochastic processes during colonization.

View Article and Find Full Text PDF