Publications by authors named "Manibalan Kesavan"

Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.

View Article and Find Full Text PDF

The development of artificial receptors has great significance in measurement science and technology. The need for a robust version of natural receptors is getting increased attention because the cost of natural receptors is still high along with storage difficulties. Aptamers, imprinted polymers, and nanozymes are some of the matured artificial receptors in analytical chemistry.

View Article and Find Full Text PDF

Single-crystalline tin-selenide (SnSe) has emerged as a high-performance and eco-friendly alternative to the lead-chalcogens often used in mid-temperature thermoelectric (TE) generators. At high temperature >800 K, the phase transition from Pnma to Cmcm causes a significant rise in the TE figure-of-merit (zT) curve. Conversely, the SnSe TE requires a booster at low temperatures, which allows broader applicability from a device perspective.

View Article and Find Full Text PDF

Three-dimensional (3D) hydrogel microspheres have aroused increasing attention as an in vitro cell culture model. Yet the preservation of cells' original biological properties has been overlooked during model construction. Here we present an integrated microfluidic device to accomplish the overall process including cell-laden microsphere generation, online extraction, and dynamic-culture.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) plays a persuasive role in the human cell physiology. Developing an efficient assay platform and a highly sensitive tracking and quantification of HO in a physiological system is crucial to understand the neoplastic changes and/or redox homeostasis of cells. In this study, a novel turn-on latent electrochemical redox probe coupled with electrocatalytic signal amplification strategy is proposed.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) was discovered as a third gasotransmitter in biological systems and recent years have seen a growing interest to understand its physiological and pathological functions. However, one major limiting factor is the lack of robust sensors to quantitatively track its production in real-time. We described a facile electrochemical assay based on latent redox probe approach for highly specific and sensitive quantification in living cells.

View Article and Find Full Text PDF

The development of sensitive fluorescence probes to detect biothiols such as cysteine and homocysteine has attracted great attention in recent times. Herein, we described the design and synthesis of coumarin based long-wavelength fluorescence probe, Bromo-2-benzothiazolyl-3-cyano-7-hydroxy coumarin (BBCH, 2) for selective detections of cysteine and homocysteine. The probe is rationally designed in such a way that both sulfhydryl and adjacent amino groups of thiols are involved in sensing process.

View Article and Find Full Text PDF

A 4-Methoxyphenyl-β-galactopyranoside (4-MPGal) substrate incorporating 4-methoxy phenol (4-MP) as an electrochemical reporter is described for the monitoring of β-Galactosidase (β-Gal) gene expressions. β-Gal derived from Escherichia coli (E. coli) and Aspergillus oryzae (A.

View Article and Find Full Text PDF

In this article, we have examined the direct spectroscopic and microscopic evidence of efficient quantum dots-α-chymotrypsin (ChT) interaction. The intrinsic fluorescence of digestive enzyme is reduced in the presence of quantum dots through ground-state complex formation. Based on the fluorescence data, quenching rate constant, binding constant, and number of binding sites are calculated under optimized experimental conditions.

View Article and Find Full Text PDF