Publications by authors named "Maniatis T"

Recombinant DNA technology has profoundly advanced virtually every aspect of biological and medical sciences, from basic research to biotechnology. Here, I discuss conceptual connections linking fundamental discoveries that were enabled by the technology, advances in the understanding of gene regulation in both prokaryotes and eukaryotes, and the recent FDA-approved CRISPR-based gene therapy for sickle cell anemia and β-thalassemia based on transcriptional derepression.

View Article and Find Full Text PDF

New Jersey was among the first states impacted by the COVID-19 pandemic, with one of the highest overall death rates in the nation. Nevertheless, relatively few reports have been published focusing specifically on New Jersey. Here we report on molecular, clinical, and epidemiologic observations, from the largest healthcare network in the state, in a cohort of vaccinated and unvaccinated individuals with laboratory-confirmed SARS-CoV-2 infection.

View Article and Find Full Text PDF

Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma (Pcdhg) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal behavioral reactivity to a range of tactile stimuli. Developmentally, distinct Pcdhg isoforms mediate LTMR synapse formation through neuron-neuron interactions and peripheral axonal branching through neuron-glia interactions.

View Article and Find Full Text PDF

Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases.

Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia.

View Article and Find Full Text PDF

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of , , or in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L).

View Article and Find Full Text PDF

Background: We previously reported inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity in 1-5% of unvaccinated patients with life-threatening COVID-19, and auto-antibodies against type I IFN in another 15-20% of cases.

Methods: We report here a genome-wide rare variant burden association analysis in 3,269 unvaccinated patients with life-threatening COVID-19 (1,301 previously reported and 1,968 new patients), and 1,373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. A quarter of the patients tested had antibodies against type I IFN (234 of 928) and were excluded from the analysis.

View Article and Find Full Text PDF

Examining the neutralizing capacity of monoclonal antibodies (MAbs) used to treat COVID-19, as well as antibodies recovered from unvaccinated, previously vaccinated, and infected individuals, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) remains critical to study. Here, we report on a SARS-CoV-2 nosocomial outbreak caused by the SARS-CoV-2 R.1 variant harboring the E484K mutation in a 281-bed psychiatric facility in New Jersey among unvaccinated inpatients and health care professionals (HCPs).

View Article and Find Full Text PDF

Emergence of SARS-CoV-2 with high transmission and immune evasion potential, the so-called variants of concern (VOC), is a major concern. We describe the early genomic epidemiology of SARS-CoV-2 recovered from vaccinated health care professionals (HCP). Our postvaccination COVID-19 symptoms-based surveillance program among HCPs in a 17-hospital network identified all vaccinated HCPs who tested positive for COVID-19 after routine screening or after self-reporting.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), harboring spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) mutations, exhibit reduced susceptibility to convalescent-phase serum, commercial antibody cocktails, and vaccine neutralization and have been associated with reinfections. The accumulation of these mutations could be the consequence of intrahost viral evolution due to prolonged infection in immunocompromised hosts. In this study, we document the microevolution of SARS-CoV-2 recovered from sequential tracheal aspirates from an immunosuppressed patient on steroids and convalescent plasma therapy and identify the emergence of multiple NTD and RBD mutations.

View Article and Find Full Text PDF
Article Synopsis
  • TBK1 is crucial for mitophagy, and over 90 mutations in this enzyme are linked to ALS and fronto-temporal dementia, affecting its functions in ways that can disrupt mitochondrial clearance.
  • Some mutations severely disrupt the mitophagy pathway, while others only cause mild effects; TBK1’s ability to dimerize and its kinase activity are important but not solely responsible for its function.
  • The study highlights that TBK1 mutations can cause mitochondrial stress, contributing to ALS progression, but the impact of these mutations may vary depending on cell types and other related pathways.
View Article and Find Full Text PDF

The identification of rare variants associated with schizophrenia has proven challenging due to genetic heterogeneity, which is reduced in founder populations. In samples from the Ashkenazi Jewish population, we report that schizophrenia cases had a greater frequency of novel missense or loss of function (MisLoF) ultra-rare variants (URVs) compared to controls, and the MisLoF URV burden was inversely correlated with polygenic risk scores in cases. Characterizing 141 "case-only" genes (MisLoF URVs in ≥3 cases with none in controls), the cadherin gene set was associated with schizophrenia.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the varying outcomes of COVID-19 infection, from asymptomatic cases to severe pneumonia.
  • Researchers identified rare loss-of-function variants at 13 specific human loci related to immune response that are more prevalent in patients with severe illness.
  • Experimental tests revealed that these genetic variants can make human cells more susceptible to SARS-CoV-2, indicating that certain immune deficiencies may contribute to severe COVID-19 cases.
View Article and Find Full Text PDF

During development, individual neurons extend highly branched arbors that innervate the surrounding territory, enabling the formation of appropriate synaptic connections. The clustered protocadherins (cPCDH), a family of diverse cell-surface homophilic proteins, provide each neuron with a cell specific identity required for distinguishing between self versus non-self. While only 52 unique cPcdh isoforms are encoded in the human genome, a combination of stochastic promoter choice and the formation of a protein lattice through engagement of adjacent cPCDH protein cis/trans-tetramers confer the high degree of cellular specificity required for self-recognition.

View Article and Find Full Text PDF

Cortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Here, we show that loss of clustered gamma protocadherins (), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice.

View Article and Find Full Text PDF
Article Synopsis
  • DNA sequence variants in the TBK1 gene are linked to sporadic and familial cases of ALS, but mice with specific TBK1 mutations don’t show typical neurodegenerative symptoms.
  • Loss of TBK1 function in motor neurons leads to impaired autophagy and quicker disease onset in SOD1 ALS model mice, though it doesn’t change their lifespan.
  • Point mutations reducing TBK1 activity in all cells also speed up disease onset but unexpectedly extend the lifespan, indicating that TBK1 plays different roles in ALS progression depending on the cell type involved.
View Article and Find Full Text PDF

Exonic DNA sequence variants in the gene associate with both sporadic and familial amyotrophic lateral sclerosis (ALS). Here, we examine functional defects in 25 missense TBK1 mutations, focusing on kinase activity and protein-protein interactions. We identified kinase domain (KD) mutations that abolish kinase activity or display substrate-specific defects in specific pathways, such as innate immunity and autophagy.

View Article and Find Full Text PDF

The assembly of functional neural circuits in vertebrate organisms requires complex mechanisms of self-recognition and self-avoidance. Neurites (axons and dendrites) from the same neuron recognize and avoid self, but engage in synaptic interactions with other neurons. Vertebrate neural self-avoidance requires the expression of distinct repertoires of clustered Protocadherin (Pcdh) cell-surface protein isoforms, which act as cell-surface molecular barcodes that mediate highly specific homophilic self-recognition, followed by repulsion.

View Article and Find Full Text PDF

Neurite self-recognition and avoidance are fundamental properties of all nervous systems. These processes facilitate dendritic arborization, prevent formation of autapses and allow free interaction among non-self neurons. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, β- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities.

View Article and Find Full Text PDF

Stochastic activation of clustered Protocadherin (Pcdh) α, β, and γ genes generates a cell-surface identity code in individual neurons that functions in neural circuit assembly. Here, we show that Pcdhα gene choice involves the activation of an antisense promoter located in the first exon of each Pcdhα alternate gene. Transcription of an antisense long noncoding RNA (lncRNA) from this antisense promoter extends through the sense promoter, leading to DNA demethylation of the CTCF binding sites proximal to each promoter.

View Article and Find Full Text PDF

Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have implicated novel genes using gene-based collapsing methods. However, pathogenic mutations may be concentrated in specific genic regions. To address this, we developed two collapsing strategies: One focuses rare variation collapsing on homology-based protein domains as the unit for collapsing, and the other is a gene-level approach that, unlike standard methods, leverages existing evidence of purifying selection against missense variation on said domains.

View Article and Find Full Text PDF

It is important for health-care providers to be comfortable in providing end-of-life (EOL) care to critically ill patients and realizing when continuing aggressive measures would be futile. Therefore, there is a need to understand health-care providers' self-perceived skills and barriers to providing optimum EOL care. A total of 660 health-care providers from medicine and surgery departments were asked via e-mail to complete an anonymous survey assessing their self-reported EOL care competencies, of which 238 responses were received.

View Article and Find Full Text PDF

The ability of neurites of individual neurons to distinguish between themselves and neurites from other neurons and to avoid self (self-avoidance) plays a key role in neural circuit assembly in both invertebrates and vertebrates. Similarly, when individual neurons of the same type project into receptive fields of the brain, they must avoid each other to maximize target coverage (tiling). Counterintuitively, these processes are driven by highly specific homophilic interactions between cell surface proteins that lead to neurite repulsion rather than adhesion.

View Article and Find Full Text PDF