Long-lasting memories are a core aspect of an animal's life. Such memories are characterized by unique molecular mechanisms and often unique circuitry, neither of which are completely understood in vivo. The deep knowledge of the identity and connectivity of neurons of the fruit fly , as well as the sophisticated genetic tools that allow in vivo perturbations and physiology monitoring, make it a remarkably useful organism in which to investigate the molecular mechanisms of long-term memories.
View Article and Find Full Text PDFAtaxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs).
View Article and Find Full Text PDFMammals and insects appear to have emotional states with features characteristic of human depression. A new study has defined a neural circuit including serotonergic neurons that drive sugar-induced relief from a depression-like-state in Drosophila.
View Article and Find Full Text PDFHow compartment-specific local proteomes are generated and maintained is inadequately understood, particularly in neurons, which display extreme asymmetries. Here we show that local enrichment of Ca/calmodulin-dependent protein kinase II (CaMKII) in axons of Drosophila mushroom body neurons is necessary for cellular plasticity and associative memory formation. Enrichment is achieved via enhanced axoplasmic translation of CaMKII mRNA, through a mechanism requiring the RNA-binding protein Mub and a 23-base Mub-recognition element in the CaMKII 3' UTR.
View Article and Find Full Text PDFHabituated animals retain a latent capacity for robust engagement with familiar stimuli. In most instances, the ability to override habituation is best explained by postulating that habituation arises from the potentiation of inhibitory inputs onto stimulus-encoding assemblies and that habituation override occurs through disinhibition. Previous work has shown that inhibitory plasticity contributes to specific forms of olfactory and gustatory habituation in Here, we analyze how exposure to a novel stimulus causes override of gustatory (proboscis extension reflex; PER) habituation.
View Article and Find Full Text PDFCells respond to stress with translational arrest, robust transcriptional changes, and transcription-independent formation of mRNP assemblies termed stress granules (SGs). Despite considerable interest in the role of SGs in oxidative, unfolded protein and viral stress responses, whether and how SGs contribute to stress-induced transcription have not been rigorously examined. To address this, we characterized transcriptional changes in S2 cells induced by acute oxidative-stress and assessed how these were altered under conditions that disrupted SG assembly.
View Article and Find Full Text PDFThe Ataxin-2 (Atx2) protein contributes to the progression of neurodegenerative phenotypes in animal models of amyotrophic lateral sclerosis (ALS), type 2 spinocerebellar ataxia (SCA-2), Parkinson's disease, and Huntington's disease (HD). However, because the Atx2 protein contains multiple separable activities, deeper understanding requires experiments to address the exact mechanisms by which Atx2 modulates neurodegeneration (ND) progression. Recent work on two ALS models, C9ORF72 and FUS, in Drosophila has shown that a C-terminal intrinsically disordered region (cIDR) of Atx2 protein, required for assembly of ribonucleoprotein (RNP) granules, is essential for the progression of neurodegenerative phenotypes as well as for accumulation of protein inclusions associated with these ALS models.
View Article and Find Full Text PDFPrior experience is known to deeply influence new learning. A recent study describes a neural mechanism where initial sensory experience promotes the establishment of a competing and/or cooperative memory trace that shapes behavioral expression of subsequent learning.
View Article and Find Full Text PDFUnderstanding the nature of the molecular mechanisms underlying memory formation, consolidation, and forgetting are some of the fascinating questions in modern neuroscience. The encoding, stabilization and elimination of memories, rely on the structural reorganization of synapses. These changes will enable the facilitation or depression of neural activity in response to the acquisition of new information.
View Article and Find Full Text PDFNeuroscience has an extraordinary opportunity to investigate issues historically addressed by the arts, humanities, and social sciences. As a guide, we suggest three features of meaningful progress in the collaborative field, the neurohumanities, which we illustrate through a discussion of "neural schemas."
View Article and Find Full Text PDFIn the healthy brain, homeostatic balance between excitation and inhibition maintains neural stability. Reduced inhibition may explain shared symptoms observed in autism and psychosis. Here we review evidence suggesting that altered levels of gamma-aminobutyric acid (GABA) may underlie both disorders, providing a potential cross-diagnostic therapeutic target.
View Article and Find Full Text PDFSeveral features of the adult nervous systems develop in a "critical period" (CP), during which high levels of plasticity allow neural circuits to be tuned for optimal performance. Through an analysis of long-term olfactory habituation (LTH) in female , we provide new insight into mechanisms by which CPs are regulated LTH manifests as a persistently reduced behavioral response to an odorant encountered for 4 continuous days and occurs together with the growth of specific, odorant-responsive glomeruli in the antennal lobe. We show that the CP for behavioral and structural plasticity induced by ethyl butyrate (EB) or carbon dioxide (CO) closes within 48 h after eclosion.
View Article and Find Full Text PDFThe gene of encodes a highly abundant 47 kDa synaptic vesicle-associated protein. null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin.
View Article and Find Full Text PDFA null mutation of the gene () was generated using homologous recombination. Null animals survive to larval and pupal stages due to a large maternal contribution of mRNA, which consists of a short 3'-untranslated region (UTR) form lacking regulatory elements that guide local translation. The selective loss of the long 3'UTR mRNA in -null larvae allows us to test its role in plasticity.
View Article and Find Full Text PDFNervous systems use excitatory cell assemblies to encode and represent sensory percepts. Similarly, synaptically connected cell assemblies or "engrams" are thought to represent memories of past experience. Multiple lines of recent evidence indicate that brain systems create and use inhibitory replicas of excitatory representations for important cognitive functions.
View Article and Find Full Text PDFLong-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation.
View Article and Find Full Text PDFRNA-binding Fox (Rbfox) proteins have well-established roles in regulating alternative splicing, but specific Rbfox isoforms lack nuclear localization signals and accumulate in the cytoplasm. The potential splicing-independent functions of these proteins remain unknown. Here we demonstrate that cytoplasmic Drosophila Rbfox1 regulates germ cell development and represses the translation of mRNAs containing (U)GCAUG elements within their 3'UTRs.
View Article and Find Full Text PDFThe functional requirement of adapter protein 2 (AP2) complex in synaptic membrane retrieval by clathrin-mediated endocytosis is not fully understood. Here we isolated and functionally characterized a mutation that dramatically altered synaptic development. Based on the aberrant neuromuscular junction (NMJ) synapse, we named this mutation angur (a Hindi word meaning "grapes").
View Article and Find Full Text PDFThe Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information.
View Article and Find Full Text PDFBehavioral adaptation to environmental threats and subsequent social transmission of adaptive behavior has evolutionary implications. In Drosophila, exposure to parasitoid wasps leads to a sharp decline in oviposition. We show that exposure to predator elicits both an acute and learned oviposition depression, mediated through the visual system.
View Article and Find Full Text PDFLearning processes in Drosophila have been studied through the use of Pavlovian associative memory tests, and these paradigms have been extremely useful in identifying both genetic factors and neuroanatomical structures that are essential to memory formation. Whether these same genes and brain compartments also contribute to memory formed from nonassociative experiences is not well understood. Exposures to environmental stressors such as predators are known to induce innate behavioral responses and can lead to new memory formation that allows a predator response to persist for days after the predator threat has been removed.
View Article and Find Full Text PDFNeurodevelopmental disorders arise from single or multiple gene defects. However, the way multiple loci interact to modify phenotypic outcomes remains poorly understood. Here, we studied phenotypes associated with mutations in the schizophrenia susceptibility gene dysbindin (dysb), in isolation or in combination with null alleles in the dysb network component Blos1.
View Article and Find Full Text PDF