Unlabelled: Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging.
View Article and Find Full Text PDFLight-sheet fluorescence microscopy (LSFM) provides the benefit of optical sectioning coupled with rapid acquisition times, enabling high-resolution 3-dimensional imaging of large tissue-cleared samples. Inherent to LSFM, the quality of the imaging heavily relies on the characteristics of the illumination beam, which only illuminates a thin section of the sample. Therefore, substantial efforts are dedicated to identifying slender, nondiffracting beam profiles that yield uniform and high-contrast images.
View Article and Find Full Text PDFOne major obstacle in validating drugs for the treatment or prevention of hearing loss is the limited data available on the distribution and concentration of drugs in the human inner ear. Although small animal models offer some insights into inner ear pharmacokinetics, their smaller organ size and different barrier (round window membrane) permeabilities compared to humans can complicate study interpretation. Therefore, developing a reliable large animal model for inner ear drug delivery is crucial.
View Article and Find Full Text PDFLight sheet fluorescence microscopy (LSFM) provides the benefit of optical sectioning coupled with rapid acquisition times for imaging of tissue-cleared specimen. This allows for high-resolution 3D imaging of large tissue volumes. Inherently to LSFM, the quality of the imaging heavily relies on the characteristics of the illumination beam, with the notion that the illumination beam only illuminates a thin section that is being imaged.
View Article and Find Full Text PDFLight sheet fluorescence microscopy (LSFM) is a high-speed imaging technique that is often used to image intact tissue-cleared specimens with cellular or subcellular resolution. Like other optical imaging systems, LSFM suffers from sample-induced optical aberrations that decrement imaging quality. Optical aberrations become more severe when imaging a few millimeters deep into tissue-cleared specimens, complicating subsequent analyses.
View Article and Find Full Text PDFOrganophosphate flame retardants (OPFRs) have become the predominant substitution for legacy brominated flame retardants but there is concern about their potential developmental neurotoxicity (DNT). OPFRs readily dissociate from the fireproofed substrate to the environment, and they (or their metabolites) have been detected in diverse matrices including air, water, soil, and biota, including human urine and breastmilk. Given this ubiquitous contamination, it becomes increasingly important to understand the potential effects of OPFRs on the developing nervous system.
View Article and Find Full Text PDFLight-sheet fluorescence microscopy (LSFM) is a high-speed, high-resolution and minimally phototoxic technique for 3D imaging of in vivo and in vitro specimens. LSFM exhibits optical sectioning and when combined with tissue clearing techniques, it facilitates imaging of centimeter scale specimens with micrometer resolution. Although LSFM is ubiquitous, it still faces two main challenges that effect image quality especially when imaging large volumes with high-resolution.
View Article and Find Full Text PDFLight-sheet fluorescence microscopy (LSFM) is a high-speed imaging technique that provides optical sectioning with reduced photodamage. LSFM is routinely used in life sciences for live cell imaging and for capturing large volumes of cleared tissues. LSFM has a unique configuration, in which the illumination and detection paths are separated and perpendicular to each other.
View Article and Find Full Text PDFDigital holography with diffractive phase apertures is a hologram recording technique in which at least one of the interfering waves is modulated by a phase mask. In this review, we survey several main milestones on digital holography with dynamic diffractive phase apertures. We begin with Fresnel incoherent correlation holography (FINCH), a hologram recorder with an aperture of a diffractive lens.
View Article and Find Full Text PDFThe concept of an optical incoherent synthetic aperture is widely used in astronomical interferometric telescopes. In this Letter, we propose a new, to the best of our knowledge, method to realize optical incoherent synthetic aperture imaging. The method is based on a superposition of optical transfer functions of incoherent imaging systems.
View Article and Find Full Text PDFExtending the depth-of-field (DOF) of an optical imaging system without effecting the other imaging properties has been an important topic of research for a long time. In this work, we propose a new general technique of engineering the DOF of an imaging system beyond just a simple extension of the DOF. Engineering the DOF means in this study that the inherent DOF can be extended to one, or to several, separated different intervals of DOF, with controlled start and end points.
View Article and Find Full Text PDFInterferenceless coded aperture correlation holography (I-COACH) is a non-scanning, motionless, incoherent digital holography technique. In this study we use a special type of I-COACH in which its point spread hologram (PSH) is ensemble of sparse dots. With this PSH an imaging resolution beyond the classic diffraction limit is demonstrated.
View Article and Find Full Text PDFInterferenceless coded aperture correlation holography (I-COACH) is an incoherent opto-digital technique for imaging 3D objects. In I-COACH, the light scattered from an object is modulated by a coded phase mask (CPM) and then recorded by a digital camera as an object digital hologram. To reconstruct the image, the object hologram is cross-correlated with the point spread function (PSF)-the intensity response to a point at the same object's axial location recorded with the same CPM.
View Article and Find Full Text PDFWe present a superresolution technique for imaging objects beyond the diffraction limit imposed by the limited numerical aperture (NA) of a general optical system. A coded phase mask (CPM) displayed on a spatial light modulator is introduced between the object and the input aperture of an ordinary lens-based imaging system. Consequently, the effective NA is increased beyond the inherent NA of the optical imaging system.
View Article and Find Full Text PDFInterferenceless coded aperture correlation holography (I-COACH) is a non-scanning, motionless, incoherent digital holography technique for 3D imaging. The lateral and axial resolutions of I-COACH are equivalent to those of conventional direct imaging with the same numerical aperture. The main component of I-COACH is a coded phase mask (CPM) used as the system aperture.
View Article and Find Full Text PDFInterferenceless coded aperture correlation holography (I-COACH) is an incoherent digital holography technique for imaging 3D objects without two-wave interference. In I-COACH, the object beam is modulated by a pseudorandom coded phase mask (CPM) and propagates to the camera where its intensity pattern is recorded. The image of the object is reconstructed by a cross-correlation of the object intensity pattern with a point intensity response of the system, whereas the light from both the object and the point, are modulated by the same CPM.
View Article and Find Full Text PDFInterferenceless coded aperture correlation holography (I-COACH) is an incoherent digital holography technique developed to record and reconstruct 3D images of objects without two-wave interference. Herein, we introduce a novel technique to extend the field of view (FOV) of I-COACH beyond the limit imposed by the ratio between the finite area of the image sensor and the magnification of the optical system. Light diffracted from a point object located on the optical axis is modulated by a pseudorandom coded phase mask, and the central part of the point spread hologram (PSH) on the image sensor is recorded.
View Article and Find Full Text PDF