Publications by authors named "Manhin Leung"

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics.

View Article and Find Full Text PDF

Plants responding to both intracellular and extracellular mechanical stimulations (or force signals) and develop special morphological changes, a called thigmomorphogenesis. In past decades, several signaling components have been identified and reported for being involved in the mechanotransduction (e.g.

View Article and Find Full Text PDF

Malignant transformation is a multistep process that may involve dysregulation of oncogenes and tumour suppressor genes, and monoclonal gammopathy of undetermined significance (MGUS) is believed to be a precursor of multiple myeloma. To investigate whether aberrant promoter methylation might be involved in the evolution of MGUS to multiple myeloma, we examined the p16, protein tyrosine phosphatase, non-receptor type 6 (SHP1), death-associated protein (DAP) kinase, E-cadherin and oestrogen receptor genes, most being tumour suppressor genes, by methylation-specific polymerase chain reaction. In 32 cases of multiple myeloma and 19 cases of MGUS, significantly more frequent methylation of p16 (p = 0.

View Article and Find Full Text PDF