Through urban traffic patrols, problems such as traffic congestion and accidents can be found and dealt with in time to maintain the stability of the urban traffic system. The most common way to patrol is using ground vehicles, which may be inflexible and inefficient. The vehicle-drone coordination maximizes utilizing the flexibility of drones and addresses their limited battery capacity issue.
View Article and Find Full Text PDFSensors (Basel)
April 2021
Unmanned aerial vehicle (UAV) path planning is crucial in UAV mission fulfillment, with the aim of finding a satisfactory path within affordable time and moderate computation resources. The problem is challenging due to the complexity of the flight environment, especially in three-dimensional scenarios with obstacles. To solve the problem, a hybrid differential symbiotic organisms search (HDSOS) algorithm is proposed by combining the mutation strategy of differential evolution (DE) with the modified strategies of symbiotic organism search (SOS).
View Article and Find Full Text PDFScientificWorldJournal
October 2014
Although Particle Swarm Optimization (PSO) has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner variable learning strategy (PSO-IVL) is particularly efficient for optimizing functions with symmetric variables.
View Article and Find Full Text PDFDiscovering and utilizing problem domain knowledge is a promising direction towards improving the efficiency of evolutionary algorithms (EAs) when solving optimization problems. We propose a knowledge-based variable reduction strategy (VRS) that can be integrated into EAs to solve unconstrained and first-order derivative optimization functions more efficiently. VRS originates from the knowledge that, in an unconstrained and first-order derivative optimization function, the optimal solution locates in a local extreme point at which the partial derivative over each variable equals zero.
View Article and Find Full Text PDFScientificWorldJournal
September 2013
Aiming to the imaging tasks scheduling problem on high-altitude airship in emergency condition, the programming models are constructed by analyzing the main constraints, which take the maximum task benefit and the minimum energy consumption as two optimization objectives. Firstly, the hierarchy architecture is adopted to convert this scheduling problem into three subproblems, that is, the task ranking, value task detecting, and energy conservation optimization. Then, the algorithms are designed for the sub-problems, and the solving results are corresponding to feasible solution, efficient solution, and optimization solution of original problem, respectively.
View Article and Find Full Text PDFScientificWorldJournal
September 2013
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals.
View Article and Find Full Text PDF