We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2018
RNAs are a promising class of therapeutics given their ability to regulate protein concentrations at the cellular level. Developing safe and effective strategies to deliver RNAs remains important for realizing their full clinical potential. Here, we develop lipid nanoparticle formulations that can deliver short interfering RNAs (for gene silencing) or messenger RNAs (for gene upregulation).
View Article and Find Full Text PDFB lymphocytes regulate several aspects of immunity including antibody production, cytokine secretion, and T-cell activation; moreover, B cell misregulation is implicated in autoimmune disorders and cancers such as multiple sclerosis and non-Hodgkin's lymphomas. The delivery of messenger RNA (mRNA) into B cells can be used to modulate and study these biological functions by means of inducing functional protein expression in a dose-dependent and time-controlled manner. However, current in vivo mRNA delivery systems fail to transfect B lymphocytes and instead primarily target hepatocytes and dendritic cells.
View Article and Find Full Text PDF