Glycoside hydrolases (GHs) are enzymes involved in the degradation of oligosaccharides and polysaccharides. The sequence space of GHs is rapidly expanding due to the increasing number of available sequences. This expansion paves the way for the discovery of novel enzymes with peculiar structural and functional properties.
View Article and Find Full Text PDFLaccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators.
View Article and Find Full Text PDFGlycoside hydrolases (GHs) are pivotal in the hydrolysis of the glycosidic bonds of sugars, which are the main carbon and energy sources. The genome of Marinomonas sp. ef1, an Antarctic bacterium, contains three GHs belonging to family 3.
View Article and Find Full Text PDFCold-active enzymes support life at low temperatures due to their ability to maintain high activity in the cold and can be useful in several biotechnological applications. Although information on the mechanisms of enzyme cold adaptation is still too limited to devise general rules, it appears that very diverse structural and functional changes are exploited in different protein families and within the same family. In this context, we studied the cold adaptation mechanism and the functional properties of a member of the glycoside hydrolase family 1 (GH1) from the Antarctic bacterium Marinomonas sp.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) is pivotal in forming biomolecular condensates, which are crucial in several biological processes. Intrinsically disordered regions (IDRs) are typically responsible for driving LLPS due to their multivalency and high content of charged residues that enable the establishment of electrostatic interactions. In our study, we examined the role of charge distribution in the condensation of the disordered N-terminal domain of human topoisomerase I (hNTD).
View Article and Find Full Text PDFThe yeast Rif2 protein is known to inhibit Mre11 nuclease and the activation of Tel1 kinase through a short motif termed MIN, which binds the Rad50 subunit and simulates its ATPase activity in vitro. The mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA double-strand breaks (DSBs) are poorly understood. In this study, we employed AlphaFold-Multimer modelling to pinpoint and validate the interaction surface between Rif2 MIN and Rad50.
View Article and Find Full Text PDFBackground: There is much discussion in the literature about the link between traumatic events related to war and mental illness. However, in comparison, mental health has been more researched than protective factors such as coping methods, which are the primary factors to build resilience in these circumstances. This review examines the psychological and environmental elements that influence the resilience of Ukrainian refugees and IDPs by analyzing coping strategies and risk and protective factors.
View Article and Find Full Text PDFBackground: COVID-19 outbreak deeply impacted on mental health, with high rate of psychological distress in healthcare professionals, patients and general population. Current literature on trauma showed no increase in ICU admissions for deliberate self-inflicted injuries in the first weeks after the beginning of COVID-19.
Objectives: We tested the hypothesis that self-inflicted injuries/harms of any method requiring ICU admission increased in the year following COVID-19 outbreak.
Background: Escherichia coli cells are the most frequently used hosts in recombinant protein production processes and mainly require molecules such as IPTG or pure lactose as inducers of heterologous expression. A possible way to reduce the production costs is to replace traditional inducers with waste materials such as cheese whey permeate (CWP). CWP is a secondary by-product generated from the production of the valuable whey proteins, which are obtained from ultrafiltration of cheese whey, a main by-product of the dairy industry, which is rich in lactose.
View Article and Find Full Text PDFBackground: Investigating the health-related quality of life (HRQoL) after intensive care unit (ICU) discharge is necessary to identify possible modifiable risk factors. The primary aim of this study was to investigate the HRQoL in COVID-19 critically ill patients one year after ICU discharge.
Methods: In this multicenter prospective observational study, COVID-19 patients admitted to nine ICUs from 1 March 2020 to 28 February 2021 in Italy were enrolled.
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ). NHEJ is induced by the binding to DSBs of the Ku70-Ku80 heterodimer, which acts as a hub for the recruitment of downstream NHEJ components. An important issue in DSB repair is the maintenance of the DSB ends in close proximity, a function that in yeast involves the MRX complex and Sae2.
View Article and Find Full Text PDFA growing body of research highlights how communities traumatized by conflict and displacement suffer from long-term mental and psychosocial illnesses. The Russian army's attack on Ukraine has resulted in an estimated 10 million people being internally or externally displaced from Ukraine, of whom more than 3.8 million have left Ukraine to seek refuge elsewhere in Europe.
View Article and Find Full Text PDFA key aspect of adaptation to cold environments is the production of cold-active enzymes by psychrophilic organisms. These enzymes not only have high activity at low temperatures, but also exhibit remarkable structural flexibility and thermolability. In this context, the role of metal ions has been little explored, and the few available studies seem to suggest that metal binding counteracts structural flexibility.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) are ensembles of interconverting conformers whose conformational properties are governed by several physico-chemical factors, including their amino acid composition and the arrangement of oppositely charged residues within the primary structure. In this work, we investigate the effects of charge patterning on the average compactness and shape of three model IDPs with different proline content. We model IDP ensemble conformations as ellipsoids, whose size and shape are calculated by combining data from size-exclusion chromatography and native mass spectrometry.
View Article and Find Full Text PDFBroadly used in biocatalysis as acyl acceptors or (co)-solvents, short-chain alcohols often cause irreversible loss of enzyme activity. Understanding the mechanisms of inactivation is a necessary step toward the optimization of biocatalytic reactions and the design of enzyme-based sustainable processes. The functional and structural responses of an immobilized enzyme, Novozym 435 (N-435), exposed to methanol, ethanol, and tert-butanol, are explored in this work.
View Article and Find Full Text PDFBudding yeast Dpb4 (POLE3/CHRAC17 in mammals) is a highly conserved histone fold protein that is shared by two protein complexes: the chromatin remodeler ISW2/hCHRAC and the DNA polymerase ε (Pol ε) holoenzyme. In Saccharomyces cerevisiae, Dpb4 forms histone-like dimers with Dls1 in the ISW2 complex and with Dpb3 in the Pol ε complex. Here, we show that Dpb4 plays two functions in sensing and processing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFThe study of enzymes from extremophiles arouses interest in Protein Science because of the amazing solutions these proteins adopt to cope with extreme conditions. Recently solved, the structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) pinpoints a mechanism of dimerization unusual for this class of enzymes. The quaternary structure of SpAAP relies on a domain-swapping mechanism involving the N-terminal A1 helix.
View Article and Find Full Text PDFFood function is nowadays not merely limited to nourishment supplying; consumers' interest is oriented to food healthiness and nutritional value, animal welfare, environmental impact of animal productions, and products' traceability. The objective of the present work is to compare physical parameters and fatty acids profiles of market eggs produced from hens housed in four different systems. In addition, the effects of the presence of an outdoor space allowance (IND = no outdoor space allowance, OUT = outdoor space allowance) on the same parameters have been investigated.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2021
Ice-binding proteins (IBPs) have been identified in numerous polar algae and bacteria, but so far not in any cyanobacteria, despite the abundance of cyanobacteria in polar regions. We previously reported strong IBP activity associated with an Antarctic species. In this study, to identify the proteins responsible, as well as elucidate their origin, we sequenced the DNA of an environmental sample of this species, designated sp.
View Article and Find Full Text PDF