Despite 15 years of extensive investigation, the fabrication and study of nanofluidic devices that incorporate a single carbon nanotube (CNT) still represents a remarkable experimental challenge. In this study, we present the fabrication of nanofluidic devices that integrate an individual single-walled CNT (SWCNT), showcasing a notable reduction in noise by 1-3 orders of magnitude compared to conventional devices. This achievement was made possible by employing high dielectric constant materials for both the substrate and the CNT-covering layer.
View Article and Find Full Text PDFWe describe a complete methodology to bridge the scales between nanoscale molecular dynamics and (micrometer) mesoscale Monte Carlo simulations in lipid membranes and vesicles undergoing phase separation, in which curving molecular species are furthermore embedded. To go from the molecular to the mesoscale, we notably appeal to physical renormalization arguments enabling us to rigorously infer the mesoscale interaction parameters from its molecular counterpart. We also explain how to deal with the physical timescales at stake at the mesoscale.
View Article and Find Full Text PDFIn recent experiments, unprecedentedly large values for the conductivity of electrolytes through carbon nanotubes (CNTs) have been measured, possibly owing to flow slip and a high pore surface charge density whose origin remains debated. Here, we model the coupling between the CNT capacitance and the electrolyte-filled pore one and study how electrolyte transport is modulated when a gate voltage is applied to the CNT. Our work shows that under certain conditions the quantum capacitance is lower than the pore one due to the finite quasi-1D CNT electronic density of states and therefore controls the CNT surface charge density that dictates the confined electrolyte conductivity.
View Article and Find Full Text PDFNanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations.
View Article and Find Full Text PDFIn cell membranes, proteins and lipids are organized into submicrometric nanodomains of varying sizes, shapes, and compositions, performing specific functions. Despite their biological importance, the detailed morphology of these nanodomains remains unknown. Not only can they hardly be observed by conventional microscopy due to their small size, but there is no full consensus on the theoretical models to describe their structuring and their shapes.
View Article and Find Full Text PDFUnlabelled: The single-stranded synthetic oligonucleotide PS2.M is known to provide a basis for developing sensors since it tends to fold into structures called G-quadruplexes (G4) having characteristic topology and orientation with probabilities that depend on the chemical environment. The presence and concentration of cation species are among the key factors that determine the outcome of such a process.
View Article and Find Full Text PDFBackground: Marine soundscape is the aggregation of sound sources known as geophony, biophony, and anthrophony. The soundscape analysis, in terms of collection and analysis of acoustic signals, has been proposed as a tool to evaluate the specific features of ecological assemblages and to estimate their acoustic variability over space and time. This study aimed to characterise the Capo Caccia-Isola Piana Marine Protected Area (Italy, Western Mediterranean Sea) soundscape over short temporal (few days) and spatial scales (few km) and to quantify the main anthropogenic and biological components, with a focus on fish biophonies.
View Article and Find Full Text PDFThe recent measurement of a very low dielectric constant, ε, of water confined in nanometric slit pores leads us to reconsider the physical basis of ion partitioning into nanopores. For confined ions in chemical equilibrium with a bulk of dielectric constant ε_{b}>ε, three physical mechanisms, at the origin of ion exclusion in nanopores, are expected to be modified due to this dielectric mismatch: dielectric exclusion at the water-pore interface (with membrane dielectric constant, ε_{m}<ε), the solvation energy related to the difference in Debye-Hückel screening parameters in the pore, κ, and in the bulk κ_{b}, and the classical Born solvation self-energy proportional to ε^{-1}-ε_{b}^{-1}. Our goal is to clarify the interplay between these three mechanisms and investigate the role played by the Born contribution in ionic liquid-vapor (LV) phase separation in confined geometries.
View Article and Find Full Text PDFThe Phosphorus (III) derivatives, named Phosphonates, include congeners with properties as fungicides that are effective in controlling Oomycetes. Examples are organic compounds like Fosetyl-Al [Aluminium tris-(ethylphosphonate)] and salts formed with the anion of phosphonic acid [(OH)HPO] and Potassium, Sodium and Ammonium cations. According to IUPAC, the correct nomenclature for these compounds is "phosphonates", but in common language and scientific literature they are often named "phosphites", creating ambiguity.
View Article and Find Full Text PDFLipid vesicles composed of a mixture of two types of lipids are studied by intensive Monte Carlo numerical simulations. The coupling between the local composition and the membrane shape is induced by two different spontaneous curvatures of the components. We explore the various morphologies of these biphasic vesicles coupled to the observed patterns such as nano-domains or labyrinthine mesophases.
View Article and Find Full Text PDFWe examine the behavior of supercoiled DNA minicircles containing between 200 and 400 base-pairs, also named microDNA, in which supercoiling favors thermally assisted DNA denaturation bubbles of nanometer size and controls their lifetime. Mesoscopic modeling and accelerated dynamics simulations allow us to overcome the limitations of atomistic simulations encountered in such systems, and offer detailed insight into the thermodynamic and dynamical properties associated with the nucleation and closure mechanisms of long-lived thermally assisted denaturation bubbles which do not stem from bending- or torque-driven stress. Suitable tuning of the degree of supercoiling and size of specifically designed microDNA is observed to lead to the control of opening characteristic times in the millisecond range, and closure characteristic times ranging over well distinct timescales, from microseconds to several minutes.
View Article and Find Full Text PDFTethered particle motion experiments are versatile single-molecule techniques enabling one to address in vitro the molecular properties of DNA and its interactions with various partners involved in genetic regulations. These techniques provide raw data such as the tracked particle amplitude of movement, from which relevant information about DNA conformations or states must be recovered. Solving this inverse problem appeals to specific theoretical tools that have been designed in the two last decades, together with the data pre-processing procedures that ought to be implemented to avoid biases inherent to these experimental techniques.
View Article and Find Full Text PDFEven though the persistence length L_{P} of double-stranded DNA plays a pivotal role in cell biology and nanotechnologies, its dependence on ionic strength I lacks a consensual description. Using a high-throughput single-molecule technique and statistical physics modeling, we measure L_{P} in the presence of monovalent (Li^{+}, Na^{+}, K^{+}) and divalent (Mg^{2+}, Ca^{2+}) metallic and alkyl ammonium ions, over a large range 0.5 mM≤I≤5 M.
View Article and Find Full Text PDFCell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context.
View Article and Find Full Text PDFThe number of precise conductance measurements in nanopores is quickly growing. To clarify the dominant mechanisms at play and facilitate the characterization of such systems for which there is still no clear consensus, we propose an analytical approach to the ionic conductance in nanopores that takes into account (i) electro-osmotic effects, (ii) flow slip at the pore surface for hydrophobic nanopores, (iii) a component of the surface charge density that is modulated by the reservoir pH and salt concentration c_{s} using a simple charge regulation model, and (iv) a fixed surface charge density that is unaffected by pH and c_{s}. Limiting cases are explored for various ranges of salt concentration and our formula is used to fit conductance experiments found in the literature for carbon nanotubes.
View Article and Find Full Text PDFDNA separation and analysis have advanced over recent years, benefiting from microfluidic systems that reduce sample volumes and analysis costs, essential for sequencing and disease identification in body fluids. We recently developed the μLAS technology that enables the separation, concentration, and analysis of nucleic acids with high sensitivity. The technology combines a hydrodynamic flow actuation and an opposite electrophoretic force in viscoelastic polymer solutions.
View Article and Find Full Text PDFDNA supercoiling plays an important role from a biological point of view. One of its consequences at the supramolecular level is the formation of DNA superhelices named plectonemes. Normally separated by a distance on the order of 10 nm, the two opposite double strands of a DNA plectoneme must be brought closer if a protein or protein complex implicated in genetic regulation is to be bound simultaneously to both strands, as if the plectoneme was locally pinched.
View Article and Find Full Text PDFVaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response.
View Article and Find Full Text PDFT lymphocyte cytotoxicity relies on a synaptic ring of lymphocyte function-associated antigen 1 (LFA-1), which permits polarized delivery of lytic granules. How LFA-1 organization is controlled by underlying actin cytoskeleton dynamics is poorly understood. Here, we explored the contribution of the actin cytoskeleton regulator WASP to the topography of LFA-1 using a combination of microscopy modalities.
View Article and Find Full Text PDFThe double stranded DNA molecule undergoes drastic structural changes during biological processes such as transcription during which it opens locally under the action of RNA polymerases. Local spontaneous denaturation could contribute to this mechanism by promoting it. Supporting this idea, different biophysical studies have found an unexpected increase in the flexibility of DNA molecules with various sequences as a function of the temperature, which would be consistent with the formation of a growing number of locally denatured sequences.
View Article and Find Full Text PDFIt has been known for long that the fluctuation surface tension of membranes r, computed from the height fluctuation spectrum, is not equal to the bare surface tension σ, which is introduced in the theory either as a Lagrange multiplier to conserve the total membrane area or as an external constraint. In this work we relate these two surface tensions both analytically and numerically. They are also compared to the Laplace tension γ, and the mechanical frame tension τ.
View Article and Find Full Text PDFIonic transport through single-walled carbon nanotubes (SWCNTs) is promising for many applications but remains both experimentally challenging and highly debated. Here we report ionic current measurements through microfluidic devices containing one or several SWCNTs of diameter of 1.2 to 2 nm unexpectedly showing a linear or a voltage-activated I-V dependence.
View Article and Find Full Text PDFSouth American Camelids have an increasing relevance in local economies, worldwide. These animals are bred for their meat, fur and as companion and therapy animals. Thus, their sanitary status should be well-established.
View Article and Find Full Text PDFCell membranes are out of thermodynamic equilibrium notably because of membrane recycling, i.e., active exchange of material with the cytosol.
View Article and Find Full Text PDFWe employ a field-theoretical variational approach to study the behavior of ionic solutions in the grand canonical ensemble. To describe properly the hardcore interactions between ions, we use a cutoff in Fourier space for the electrostatic contribution of the grand potential and the Carnahan-Starling equation of state with a modified chemical potential for the pressure one. We first calibrate our method by comparing its predictions at room temperature with Monte Carlo results for excess chemical potential and energy.
View Article and Find Full Text PDF