Publications by authors named "Mang-Jye Ger"

Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicated that the gene of sweet pepper plant ferredoxin-like protein (PFLP) shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is speculated that overexpressing pflp in the transgenic plant may enhance photosynthetic efficiency through the electron transport chain (ETC).

View Article and Find Full Text PDF

East Asia has highly diverse and endemic biota due to its complex geological and climatic history and its diversified topography. The continental and insular distributions of land snail genus Acusta in East Asia provide a good opportunity to compare the evolutionary processes in this group under different biogeographical conditions. In this study, we inferred the evolutionary history of the land snail genus Acusta by a molecular phylogeny and investigated how the palaeogeographic events shaped species diversity and the distribution of the Acusta genus within the island arc.

View Article and Find Full Text PDF

High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway.

View Article and Find Full Text PDF

The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency.

View Article and Find Full Text PDF

Plant ferredoxin-like protein (PFLP) is a photosynthesis-type ferredoxin (Fd) found in sweet pepper. It contains an iron-sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear.

View Article and Find Full Text PDF

Two new kelsoane-type sesquiterpenes, namely kelsoenethiol (1) and dikelsoenyl ether (2), were obtained from the Formosan soft coral Nephthea erecta. Their structures were elucidated through extensive spectroscopic analyses, ESI orbitrap mass and quantum chemical calculations (QCC). The cytotoxicity against A-459 (human lung carcinoma), P-388 (mouse lymphocytic leukemia), and HT-29 (human colon adenocarcinoma) cancer cell lines of 1 and 2 was evaluated in vitro.

View Article and Find Full Text PDF

Protection of crops against bacterial disease is an important issue in agricultural production. One of the strategies to lead plants become resistant against bacterial pathogens is employing a transgene, like plant ferredoxin-like protein (PFLP). PFLP is a photosynthetic type ferredoxin isolated from sweet pepper and contains a signal peptide for targeting towards chloroplasts.

View Article and Find Full Text PDF

Anthocyanin is the primary pigment contributing to red, violet, and blue flower color formation. The solubility of anthocyanins is enhanced by UDP glucose: flavonoid 3-O-glucosyltransferase (UFGT) through transfer of the glucosyl moiety from UDP-glucose to 3-hydroxyl group to produce the first stable pigments. To assess the possibility that UFGT is involved in the flower color formation in Phalaenopsis, the transcriptional activities of PeUFGT3, and other flower color-related genes in developing red or white flower buds were examined using RT-PCR analysis.

View Article and Find Full Text PDF

Ferredoxin I (Fd-1) is a protein existing in green tissues as an electron carrier for photosynthesis. Reactive oxygen species (ROS) are generated from an over-accumulation of electrons in photosynthetic electron chains. In previous studies, plant ferredoxin-like protein (PFLP) transgenic plants could be made resistant to virulent pathogens, by inducing the generation of ROS.

View Article and Find Full Text PDF

ABSTRACT Expression of a foreign gene to enhance plant disease resistance to bacterial pathogens is a favorable strategy. It has been demonstrated that expressing sweet pepper ferredoxin-I protein (PFLP) in transgenic plants can enhance disease resistance to bacterial pathogens that infect leaf tissue. In this study, PFLP was applied to protect tomato (Lycopersicon esculentum cv.

View Article and Find Full Text PDF

After being acclimated to constant warm (28 degrees C day/28 degrees C night) and cool-night temperature (28 degrees C day/20 degrees C night) regimes in growth chambers for 2 weeks, the two groups of mature Phalaenopsis aphrodite subsp. formosana plants both clearly exhibited a diurnal oscillation of stomatal conductance, net CO(2) uptake rate, malate and starch levels, and the phosphoenolpyruvate carboxylase (EC 4.1.

View Article and Find Full Text PDF

SUMMARY Ferredoxin-I (Fd-I) is a fundamental protein that is involved in several metabolic pathways. The amount of Fd-I found in plants is generally regulated by environmental stress, including biotic and abiotic events. In this study, the correlation between quantity of Fd-I and plant disease resistance was investigated.

View Article and Find Full Text PDF

An efficient protocol for the Agrobacterium tumefaciens-mediated transformation of calla lily (Zantedeschia elliottiana (W. Wats.) Engl.

View Article and Find Full Text PDF

Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpin(Pss)-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E.

View Article and Find Full Text PDF

The hypersensitive response (HR) is a form of cell death associated with plant resistance to pathogen infection. Harpin(pss), an elicitor from the bacterium Pseudomonas syringae pv. syringae, induces a HR in non-host plants.

View Article and Find Full Text PDF

Hypersensitive response-assisting protein (HRAP) has been previously reported as an amphipathic plant protein isolated from sweet pepper that intensifies the harpin(Pss)-mediated hypersensitive response (HR). The hrap gene has no appreciable similarity to any other known sequences, and its activity can be rapidly induced by incompatible pathogen infection. To assess the function of the hrap gene in plant disease resistance, the CaMV 35S promoter was used to express sweet pepper hrap in transgenic tobacco.

View Article and Find Full Text PDF