Publications by authors named "Manfred Roessle"

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump-probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable.

View Article and Find Full Text PDF

During the last decades discussions were taking place on the existence of global, non-thermal structural changes in biological macromolecules induced by Terahertz (THz) radiation. Despite numerous studies, a clear experimental proof of this effect for biological particles in solution is still missing. We developed a setup combining THz-irradiation with small angle X-ray scattering (SAXS), which is a sensitive method for detecting the expected structural changes.

View Article and Find Full Text PDF

At a resting sarcomere length of approximately 2.2 µm bony fish muscles put into rigor in the presence of BDM (2,3-butanedione monoxime) to reduce rigor tension generation show the normal arrangement of myosin head interactions with actin filaments as monitored by low-angle X-ray diffraction. However, if the muscles are put into rigor using the same protocol but stretched to 2.

View Article and Find Full Text PDF

Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported.

View Article and Find Full Text PDF

The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination.

View Article and Find Full Text PDF

The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA.

View Article and Find Full Text PDF

A high-brilliance synchrotron P12 beamline of the EMBL located at the PETRA III storage ring (DESY, Hamburg) is dedicated to biological small-angle X-ray scattering (SAXS) and has been designed and optimized for scattering experiments on macromolecular solutions. Scatterless slits reduce the parasitic scattering, a custom-designed miniature active beamstop ensures accurate data normalization and the photon-counting PILATUS 2M detector enables the background-free detection of weak scattering signals. The high flux and small beam size allow for rapid experiments with exposure time down to 30-50 ms covering the resolution range from about 300 to 0.

View Article and Find Full Text PDF

Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min.

View Article and Find Full Text PDF

The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L.

View Article and Find Full Text PDF

The lung is constantly exposed to immune stimulation by LPS from inhaled microorganisms. A primary mechanism to maintain immune homeostasis is based on anti-inflammatory regulation by surfactant protein A (SP-A), a secreted component of lung innate immunity. The architecture of LPS aggregates is strongly associated with biological activity.

View Article and Find Full Text PDF

The glycolytic enzyme pyruvate kinase (PK) generates ATP from ADP through substrate-level phosphorylation powered by the conversion of phosphoenolpyruvate to pyruvate. In contrast to other bacteria, Enterobacteriaceae, such as pathogenic yersiniae, harbour two pyruvate kinases encoded by pykA and pykF. The individual roles of these isoenzymes are poorly understood.

View Article and Find Full Text PDF

The subunit ε of bacterial F(1)F(O) ATP synthases plays an important regulatory role in coupling and catalysis via conformational transitions of its C-terminal domain. Here we present the first low-resolution solution structure of ε of Mycobacterium tuberculosis (Mtε) F(1)F(O) ATP synthase and the nuclear magnetic resonance (NMR) structure of its C-terminal segment (Mtε(103-120)). Mtε is significantly shorter (61.

View Article and Find Full Text PDF

The 95 kDa subunit a of eukaryotic V-ATPases consists of a C-terminal, ion-translocating part and an N-terminal cytosolic domain. The latter's N-terminal domain (~40 kDa) is described to bind in an acidification-dependent manner with cytohesin-2 (ARNO), giving the V-ATPase the putative function as pH-sensing receptor. Recently, the solution structure of the very N-terminal segment of the cytosolic N-terminal domain has been solved.

View Article and Find Full Text PDF

The tropoelastin monomer undergoes stages of association by coacervation, deposition onto microfibrils, and cross-linking to form elastic fibers. Tropoelastin consists of an elastic N-terminal coil region and a cell-interactive C-terminal foot region linked together by a highly exposed bridge region. The bridge region is conveniently positioned to modulate elastic fiber assembly through association by coacervation and its proximity to dominant cross-linking domains.

View Article and Find Full Text PDF

Nuclear hormone receptors (NHRs) control numerous physiological processes through the regulation of gene expression. The present study provides a structural basis for understanding the role of DNA in the spatial organization of NHR heterodimers in complexes with coactivators such as Med1 and SRC-1. We have used SAXS, SANS and FRET to determine the solution structures of three heterodimer NHR complexes (RXR-RAR, PPAR-RXR and RXR-VDR) coupled with the NHR interacting domains of coactivators bound to their cognate direct repeat elements.

View Article and Find Full Text PDF

PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. The PhzE monomer contains both a chorismate-converting menaquinone, siderophore, tryptophan biosynthesis (MST) and a type 1 glutamine amidotransferase (GATase1) domain connected by a 45-residue linker. We present here the crystal structure of PhzE from Burkholderia lata 383 in a ligand-free open and ligand-bound closed conformation at 2.

View Article and Find Full Text PDF

The addition of glycosylphosphatidylinositol (GPI) anchors to eukaryotic proteins in the lumen of the endoplasmic reticulum is catalyzed by the transamidase complex, composed of at least five subunits (PIG-K, PIG-S, PIG-T, PIG-U and GPAA1). Here PIG-K(24-337) and PIG-S(38-467) from yeast, including the residues 24-337 and 38-467 of the entire 411 and 534 residue protein, respectively, was produced in Escherichia coli and purified to homogeneity. Analysis of secondary structure by circular dichroism spectroscopy showed that yPIG-K(24-377) comprises 52% α-helix and 12% β-sheet, whereas yPIG-S(38-467) involves 58% α-helix and 18% β-sheet.

View Article and Find Full Text PDF

Vacuolar ATPases use the energy derived from ATP hydrolysis, catalyzed in the A(3)B(3) sector of the V(1) ATPase to pump protons via the membrane-embedded V(O) sector. The energy coupling between the two sectors occurs via the so-called central stalk, to which subunit F does belong. Here we present the first low resolution structure of recombinant subunit F (Vma7p) of a eukaryotic V-ATPase from Saccharomyces cerevisiae, analyzed by small angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Lipopolysaccharides (LPSs) from Gram-negative bacteria are strong elicitors of the human immune systems. There is strong evidence that aggregates and not monomers of LPS play a decisive role at least in the initial stages of cell activation of immune cells such as mononuclear cells. In previous reports, it was shown that the biologically most active part of enterobacterial LPS, hexa-acyl bisphosphorylated lipid A, adopts a particular supramolecular conformation, a cubic aggregate structure.

View Article and Find Full Text PDF
Article Synopsis
  • The alpha subunit of E. coli ATP synthase was studied for its structure and interactions with nucleotides, showing it is monodisperse.
  • Nucleotide binding affinities were quantified using fluorescence correlation spectroscopy, revealing specific binding constants for MgATP and MgADP.
  • The inhibitory effects of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) on nucleotide binding were observed, substantially reducing binding capacity at micromolar concentrations for both E. coli and Methanosarcina mazei ATP synthase subunits.
View Article and Find Full Text PDF

The beta-sandwich cupredoxin Plastocyanin (Pc) was found to self-assemble in the presence of Zn(2+), a known mediator of protein-protein interfaces. Diffraction-quality crystals of Pc grew from solutions containing zinc acetate as the sole precipitant. Di- and trinuclear zinc sites contribute to the crystal contacts in this structure.

View Article and Find Full Text PDF

The innate immune response provides a critical first-line defense against Mycobacterium tuberculosis, an intracellular pathogen that represents a major health threat world-wide. A synthetic lipopeptide (LP) mimicking the lipid moiety of the cell-wall associated 19-kDa lipoprotein from M. tuberculosis has recently been assigned an important role in the induction of an antibacterial immune response in host macrophages.

View Article and Find Full Text PDF

ALIX recruits ESCRT-III CHMP4 and is involved in membrane remodeling during endosomal receptor sorting, budding of some enveloped viruses, and cytokinesis. We show that ALIX dimerizes via the middle domain (ALIX(-V)) in solution. Structural modeling based on small angle X-ray scattering (SAXS) data reveals an elongated crescent-shaped conformation for dimeric ALIX lacking the proline-rich domain (ALIX(BRO1-V)).

View Article and Find Full Text PDF

The bone morphogenetic protein (BMP)-1/tolloid metalloproteinases are evolutionarily conserved enzymes that are fundamental to dorsal-ventral patterning and tissue morphogenesis. The lack of knowledge regarding how these proteinases recognize and cleave their substrates represents a major hurdle to understanding tissue assembly and embryonic patterning. Although BMP-1 and mammalian tolloid (mTLD) are splice variants, it is puzzling why BMP-1, which lacks 3 of the 7 noncatalytic domains present in all other family members, is the most effective proteinase.

View Article and Find Full Text PDF

Pathogenic yersiniae utilize a type three secretion system (T3SS) to inject Yop proteins into host cells in order to undermine their immune response. YscM1 and YscM2 proteins have been reported to be functionally equivalent regulators of the T3SS in Yersinia enterocolitica. Here, we show by affinity purification, native gel electrophoresis and small angle x-ray scattering that both YscM1 and YscM2 bind to phosphoenolpyruvate carboxylase (PEPC) of Y.

View Article and Find Full Text PDF