Publications by authors named "Manfred Ramsteiner"

Their high tunability of electronic and magnetic properties makes transition-metal oxides (TMOs) highly intriguing for fundamental studies and promising for a wide range of applications. TMOs with strong ferrimagnetism provide new platforms for tailoring the anomalous Hall effect (AHE) beyond conventional concepts based on ferromagnets, and particularly TMOs with perpendicular magnetic anisotropy (PMA) are of prime importance for today's spintronics. This study reports on transport phenomena and magnetic characteristics of the ferrimagnetic TMO NiCo O (NCO) exhibiting PMA.

View Article and Find Full Text PDF

Van der Waals (vdW) heterostructures combining layered ferromagnets and other 2D crystals are promising building blocks for the realization of ultracompact devices with integrated magnetic, electronic, and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing for realizing highly uniform heterostructures with well-defined interfaces between different 2D-layered materials. It is also required that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets.

View Article and Find Full Text PDF

Phase coherence in nanostructures is at the heart of a wide range of quantum effects such as Josephson oscillations between exciton-polariton condensates in microcavities, conductance quantization in 1D ballistic transport, or the optical (excitonic) Aharonov-Bohm effect in semiconductor quantum rings. These effects only occur in structures of the highest perfection. The 2D semiconductor heterostructures required for the observation of Aharonov-Bohm oscillations have proved to be particularly demanding, since interface roughness or alloy fluctuations cause a loss of the spatial phase coherence of excitons, and ultimately induce exciton localization.

View Article and Find Full Text PDF

Controlled and reproducible doping is essential for nanowires (NWs) to realize their functions. However, for the widely used self-catalyzed vapor-liquid-solid (VLS) growth mode, the doping mechanism is far from clear, as the participation of the nanoscale liquid phase makes the doping environment highly complex and significantly different from that of the thin film growth. Here, the doping mechanism of self-catalyzed NWs and the influence of self-catalytic droplets on the doping process are systematically studied using beryllium (Be) doped GaAs NWs.

View Article and Find Full Text PDF

We demonstrate an all-epitaxial and scalable growth approach to fabricate single-crystalline GaN nanowires on graphene by plasma-assisted molecular beam epitaxy. As substrate, we explore several types of epitaxial graphene layer structures synthesized on SiC. The different structures differ mainly in their total number of graphene layers.

View Article and Find Full Text PDF

Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate.

View Article and Find Full Text PDF

GaN nanowires (NWs) doped with Mg as a p-type impurity were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. In a systematic series of experiments, the amount of Mg supplied during NW growth was varied. The incorporation of Mg into the NWs was confirmed by the observation of donor-acceptor pairs and acceptor-bound excitons in low-temperature photoluminescence spectroscopy.

View Article and Find Full Text PDF

Nanoscale substrates such as nanowires allow heterostructure design to venture well beyond the narrow lattice mismatch range restricting planar heterostructures, owing to misfit strain relaxing at the free surfaces and partitioning throughout the entire nanostructure. In this work, we uncover a novel strain relaxation process in GaAs/InGaAs core-shell nanowires that is a direct result of the nanofaceted nature of these nanostructures. Above a critical lattice mismatch, plastically relaxed mounds form at the edges of the nanowire sidewall facets.

View Article and Find Full Text PDF

Scaling graphene down to nanoribbons is a promising route for the implementation of this material into devices. Quantum confinement of charge carriers in such nanostructures, combined with the electric field-induced break of symmetry in AB-stacked bilayer graphene, leads to a band gap wider than that obtained solely by this symmetry breaking. Consequently, the possibility of fabricating AB-stacked bilayer graphene nanoribbons with high precision is very attractive for the purposes of applied and basic science.

View Article and Find Full Text PDF

Efficient infrared light emitters integrated on the mature Si technology platform could lead to on-chip optical interconnects as deemed necessary for future generations of ultrafast processors as well as to nanoanalytical functionality. Toward this goal, we demonstrate the use of GaAs-based nanowires as building blocks for the emission of light with micrometer wavelength that are monolithically integrated on Si substrates. Free-standing (In,Ga)As/GaAs coaxial multishell nanowires were grown catalyst-free on Si(111) by molecular beam epitaxy.

View Article and Find Full Text PDF

An analysis of the strain in an axial nanowire superlattice shows that the dominating strain state can be defined arbitrarily between unstrained and maximum mismatch strain by choosing the segment height ratios. We give experimental evidence for a successful strain design in series of GaN nanowire ensembles with axial InxGa1-xN quantum wells. We vary the barrier thickness and determine the strain state of the quantum wells by Raman spectroscopy.

View Article and Find Full Text PDF

We report on a method for the fabrication of graphene on a silicon dioxide substrate by solid-state dissolution of an overlying stack of a silicon carbide and a nickel thin film. The carbon dissolves in the nickel by rapid thermal annealing. Upon cooling, the carbon segregates to the nickel surface forming a graphene layer over the entire nickel surface.

View Article and Find Full Text PDF

We present the electrical spin injection from room-temperature ferromagnetic (Ga, Mn)N in nitride-based spin-polarized light-emitting diodes. The electroluminescence spectra from the spin LED indicate the existence of the spin polarization via optical polarization of emitted light up to room temperature. This demonstrates that the spin injection from the (Ga, Mn)N layer into (In, Ga)N quantum wells was achieved persisting up to room temperature by comparing it with the magnetic field dependence of the Hall resistance, which is proportional to the out-of-plane magnetization.

View Article and Find Full Text PDF