Publications by authors named "Manfred J Schmitt"

Anger, indignation, guilt, rumination, victim compensation, and perpetrator punishment are considered primary responses associated with justice sensitivity (JS). However, injustice and high JS may predispose to further responses. We had = 293 adults rate their JS, 17 potential responses toward 12 unjust scenarios from the victim's, observer's, beneficiary's, and perpetrator's perspectives, and several control variables.

View Article and Find Full Text PDF

Human kidney anion exchanger 1 (kAE1) facilitates simultaneous efflux of bicarbonate and absorption of chloride at the basolateral membrane of α-intercalated cells. In these cells, kAE1 contributes to systemic acid-base balance along with the proton pump v-H -ATPase and the cytosolic carbonic anhydrase II. Recent electron microscopy analyses in yeast demonstrate that heterologous expression of several kAE1 variants causes a massive accumulation of the anion transporter in intracellular membrane structures.

View Article and Find Full Text PDF

In eukaryotic cells, KDEL receptors (KDELRs) facilitate the retrieval of endoplasmic reticulum (ER) luminal proteins from the Golgi compartment back to the ER. Apart from the well-documented retention function, recent findings reveal that the cellular KDELRs have more complex roles, e.g.

View Article and Find Full Text PDF

K1 represents a heterodimeric A/B toxin secreted by virus-infected strains. In a two-staged receptor-mediated process, the ionophoric activity of K1 leads to an uncontrolled influx of protons, culminating in the breakdown of the cellular transmembrane potential of sensitive cells. K1 killer yeast necessitate not only an immunity mechanism saving the toxin-producing cell from its own toxin but, additionally, a molecular system inactivating the toxic α subunit within the secretory pathway.

View Article and Find Full Text PDF

has been frequently used to study biogenesis, functionality, and intracellular transport of various renal proteins, including ion channels, solute transporters, and aquaporins. Specific mutations in genes encoding most of these renal proteins affect kidney function in such a way that various disease phenotypes ultimately occur. In this context, human kidney anion exchanger 1 (kAE1) represents an important bicarbonate/chloride exchanger which maintains the acid-base homeostasis in the human body.

View Article and Find Full Text PDF

The killer phenomenon in yeast () not only provides the opportunity to study host-virus interactions in a eukaryotic model but also represents a powerful tool to analyze potential coadaptional events and the role of killer yeast in biological diversity. Although undoubtedly having a crucial impact on the abundance and expression of the killer phenotype in killer-yeast harboring communities, the influence of a particular toxin on its producing host cell has not been addressed sufficiently. In this study, we describe a model system of two K1 killer yeast strains with distinct phenotypical differences pointing to substantial selection pressure in response to the toxin secretion level.

View Article and Find Full Text PDF

Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body.

View Article and Find Full Text PDF

The killer toxin K1 is a virally encoded fungal A/B toxin acting by disrupting plasma membrane integrity. The connection of α and β constitutes a critical feature for toxin biology and for decades the formation of three disulphide bonds linking the major toxin subunits was accepted as status quo. Due to the absence of experimental evidence, the involvement of each cysteine in heterodimer formation, K1 lethality and immunity was systematically analysed.

View Article and Find Full Text PDF

KDEL receptors (KDELRs) represent transmembrane proteins of the secretory pathway which regulate the retention of soluble ER-residents as well as retrograde and anterograde vesicle trafficking. In addition, KDELRs are involved in the regulation of cellular stress response and ECM degradation. For a deeper insight into KDELR1 specific functions, we characterised a KDELR1-KO cell line (HAP1) through whole transcriptome analysis by comparing KDELR1-KO cells with its respective HAP1 wild-type.

View Article and Find Full Text PDF

The K1 A/B toxin secreted by virus-infected strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner.

View Article and Find Full Text PDF

Bacterial and plant A/B toxins exploit the natural trafficking pathways in eukaryotic cells to reach their intracellular target(s) in the cytosol and to ultimately kill. Such A/B toxins generally consist of an enzymatically active Asubunit (e.g.

View Article and Find Full Text PDF

Background: Virus infected killer strains of the baker's yeast Saccharomyces cerevisiae secrete protein toxins such as K28, K1, K2 and Klus which are lethal to sensitive yeast strains of the same or related species. K28 is somewhat unique as it represents an α/β heterodimeric protein of the A/B toxin family which, after having bound to the surface of sensitive target cells, is taken up by receptor-mediated endocytosis and transported through the secretory pathway in a retrograde manner. While the current knowledge on yeast killer toxins is largely based on genetic screens for yeast mutants with altered toxin sensitivity, in vivo imaging of cell surface binding and intracellular toxin transport is still largely hampered by a lack of fluorescently labelled and biologically active killer toxin variants.

View Article and Find Full Text PDF

Activated dendritic cells (DC) induce and polarize T-cell responses by expression of distinct maturation markers and cytokines. This study systematically investigated the capacity of different biotechnically relevant yeast species and strains including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Candida glabrata to initiate maturation of human DC. As important prerequisite for T-cell activation, all yeasts were shown to effectively induce, though to a different extent, the expression of the activation marker CD83, the co-stimulatory molecules CD80, CD86, CD54, CD58, and CD40, as well as the antigen-presenting molecules MHCs I and II.

View Article and Find Full Text PDF

Killer toxin K1 is a heterodimeric protein toxin secreted by strains infected with the M1 double-stranded RNA 'killer' virus. After binding to a primary receptor at the level of the cell wall, K1 interacts with its secondary plasma membrane receptor Kre1p, eventually leading to an ionophoric disruption of membrane function. Although it has been under investigation for decades, neither the particular mechanisms leading to toxicity nor those leading to immunity have been elucidated.

View Article and Find Full Text PDF

The initial discovery of killer toxin-secreting brewery strains of () in the mid-sixties of the last century marked the beginning of intensive research in the yeast virology field. So far, four different killer toxins (K28, K1, K2, and Klus), encoded by cytoplasmic inherited double-stranded RNA viruses (dsRNA) of the family, have been identified. Among these, K28 represents the unique example of a yeast viral killer toxin that enters a sensitive cell by receptor-mediated endocytosis to reach its intracellular target(s).

View Article and Find Full Text PDF

K28 is a viral A/B protein toxin that intoxicates yeast and fungal cells by endocytosis and retrograde transport to the endoplasmic reticulum (ER). Although toxin translocation into the cytosol occurs on the oxidized α/β heterodimer, the precise mechanism of how the toxin crosses the ER membrane is unknown. Here we identify pH-triggered, toxin-intrinsic thiol rearrangements that crucially control toxin conformation and host cell killing.

View Article and Find Full Text PDF

RTA, the catalytic A-subunit of the ribosome inactivating A/B toxin ricin, inhibits eukaryotic protein biosynthesis by depurination of 28S rRNA. Although cell surface binding of ricin holotoxin is mainly mediated through its B-subunit (RTB), sole application of RTA is also toxic, albeit to a significantly lower extent, suggesting alternative pathways for toxin uptake and transport. Since ricin toxin trafficking in mammalian cells is still not fully understood, we developed a GFP-based reporter assay in yeast that allows rapid identification of cellular components required for RTA uptake and subsequent transport through a target cell.

View Article and Find Full Text PDF

A/B toxins such as cholera toxin, Pseudomonas exotoxin and killer toxin K28 contain a KDEL-like amino acid motif at one of their subunits which ensures retrograde toxin transport through the secretory pathway of a target cell. As key step in host cell invasion, each toxin binds to distinct plasma membrane receptors that are utilized for cell entry. Despite intensive efforts, some of these receptors are still unknown.

View Article and Find Full Text PDF

Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand.

View Article and Find Full Text PDF

According to the Sensitivity-to-mean-intentions model, dispositional victim sensitivity involves a suspicious mindset that is activated by situational cues and guides subsequent information processing and behavior like a schema. Study 1 tested whether victim-sensitive persons are more prone to form expectancies of injustice in ambiguous situations and whether these expectancies mediate the relationship between victim sensitivity and cooperation behavior in a trust game. Results show an indirect effect of victim sensitivity on cooperation after unfair treatment (vs.

View Article and Find Full Text PDF

The effective targeting and subsequent binding of particulate carriers to M cells in Peyer's patches of the gut is a prerequisite for the development of oral delivery systems. We have established a novel carrier system based on cell surface expression of the β1-integrin binding domain of invasins derived from Yersinia enterocolitica and Yersinia pseudotuberculosis on the yeast Saccharomyces cerevisiae. All invasin derivatives were shown to be effectively expressed on the cell surface and recombinant yeast cells showed improved binding to both human HEp-2 cells and M-like cells in vitro.

View Article and Find Full Text PDF

Misfolded and incorrectly assembled proteins in the secretory pathway are eliminated by ubiquitylation and proteasomal degradation in a process known as ER-associated degradation (ERAD). Retrotranslocation of diverse substrates including misfolded proteins and viruses occurs through channels in the ER membrane, which are also utilized for host cell penetration by A/B class protein toxins such as cholera toxin, ricin or K28. According to the current view, disulfide-bonded proteins must either be reduced or rearranged to ensure translocation competence and entry into the cytosol from the ER.

View Article and Find Full Text PDF

Vaccine vehicles based on recombinant yeasts have become promising candidates for the induction of cellular immune responses. In this study, we investigated the capacity of the fission yeast Sz. pombe for the delivery of functional nucleic acids into murine and human antigen-presenting cells.

View Article and Find Full Text PDF

A central prerequisite in using yeast as antigen carrier in vaccination is its efficient interaction with cellular components of the innate immune system, mainly mediated by cell surface structures. Here, we investigated the distribution of major yeast cell wall components such as mannan, β-glucan and chitin of four different and likewise biotechnologically relevant yeasts (Saccharomyces, Pichia, Kluyveromyces and Schizosaccharomyces) and analyzed the influence of heat-treatment on β-1,3-glucan exposure at the outer yeast cell surface as well as the amount of yeast induced reactive oxygen species (ROS) production by antigen presenting cells (APC) in human blood. We found that yeasts significantly differ in the distribution of their cell wall components and that heat-treatment affected both, cell wall composition and yeast-induced ROS production by human APCs.

View Article and Find Full Text PDF