Publications by authors named "Manfei Fu"

Biomaterials are widely used in regenerative medicine to repair full-thickness skin defect wounds. The adipose-derived stromal vascular fraction (SVF) shows pro-regenerative properties, however, the biological activity of SVF is suppressed due to the lack of an external scaffold. Tilapia skin, as a sustained and recyclable biomaterial with low immunogenicity, was applied in the preparation of a hydrogel.

View Article and Find Full Text PDF

Linear polyethylenimine (L-PEI) has numerous applications, such as in pharmaceutical formulations, gene delivery, and water treatment. However, due to the presence of secondary amine groups, L-PEI shows a relatively high toxicity and low biocompatibility. Here, various organic anhydrides were used to modify L-PEI to reduce its toxicity and enhance its functionality.

View Article and Find Full Text PDF

A guided bone regeneration (GBR) membrane can act as a barrier to prevent the invasion and interference from foreign soft tissues, promoting infiltration and proliferation of osteoblasts in the bone defect area. Herein, a composite scaffold with dual functions of osteogenesis and antibacterial effects was prepared for GBR. A polycaprolactone (PCL)/nano-hydroxyapatite (n-HA) aerogel produced by electrospinning and freeze-drying techniques was fabricated as the loose layer of the scaffold, while a PCL nanofiber membrane was used as the dense layer.

View Article and Find Full Text PDF

The mucoadhesive characteristics of amphoteric polymers (also known as polyampholytes) can vary and are influenced by factors such as the solution's pH and its relative position against their isoelectric point (pH). Whilst the literature contains numerous reports on mucoadhesive properties of either cationic or anionic polymers, very little is known about these characteristics for polyampholytes EXPERIMENTS: Here, two amphoteric polymers were synthesized by reaction of linear polyethylene imine (l-PEI) with succinic or phthalic anhydride and their mucoadhesive properties were compared to bovine serum albumin (BSA), selected as a natural polyampholyte. Interactions between these polymers and porcine gastric mucin were studied using turbidimetric titration and isothermal titration calorimetry across a wide range of pHs.

View Article and Find Full Text PDF

Hydroxyethylcellulose (HEC) is a non-ionic water-soluble polymer with poor mucoadhesive properties. The mucoadhesive properties of hydroxyethylcellulose can be improved by modifying it through conjugation with molecules containing maleimide groups. Maleimide groups interact with the thiol groups present in cysteine domains in the mucin via Michael addition reaction under physiological conditions to form a strong mucoadhesive bond.

View Article and Find Full Text PDF

In this study, galactosamine-modified poly(ethylene glycol)-poly(lactide) (Gal-PEG-PLA) polymers were synthesized and Gal-PEG-PLA/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) micelles named as GPP micelles were designed to promote the oral absorption of a hydrophobic drug, curcumin (CUR). CUR-loaded Gal-PEG-PLA/TPGS micelles (CUR@GPP micelles) were fabricated using the thin-film dispersion method. CUR@GPP micelles had a size of about 100 nm, a near-neutral zeta potential, drug loading (DL) of 14.

View Article and Find Full Text PDF

Multidrug resistance (MDR) in tumor has long been considered a major factor in the failure of tumor chemotherapy. P-glycoprotein (P-gp)-mediated drug efflux plays a significant role in the MDR of tumor. Herein, paclitaxel (PTX) and P-gp inhibitor quercetin (QC) co-loaded and chondroitin sulfate (ChS)-coated mesoporous silica nanoparticles (MSNs) (MSNs-ChS@PQ) were developed to reverse MDR in breast cancer and improve chemotherapy efficacy.

View Article and Find Full Text PDF

Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention.

View Article and Find Full Text PDF

The selective infiltration of cell membranes and tissue barriers often blocks the entry of most active molecules. This natural defense mechanism prevents the invasion of exogenous substances and limits the therapeutic value of most available molecules. Therefore, it is particularly important to find appropriate ways of membrane translocation and therapeutic agent delivery to its target site.

View Article and Find Full Text PDF

Curcuminoids (CURs), a series of derivatives in turmeric (), are commonly discovered to control the deterioration of cancers. However, the physiochemical properties and the original side effects of many CURs complexes put barriers in their medical applications. To address them, the investigation of metal-based complexes with CURs is in progress.

View Article and Find Full Text PDF

Curcumin (CUR), one of the major extracts of turmeric, has gained extensive attention owing to its extraordinary benefits as anti-cancer, anti-bacterial, anti-ulcerative, anti-depressant, anti-inflammatory and wound healing agent. However, a major barrier in its application lies in its inherent nature of low water solubility, instability, and short half-life. Different strategies have been adopted to overcome these barriers like preparing nano-sized formulations and exploiting stable and hydrophilic derivatives, and collaborative drug delivery.

View Article and Find Full Text PDF

Most of the potential therapeutic agents capable to modulate the pathophysiology or treat the neurological disorders and brain tumors are useless in the current modern and advanced era of neuroscience due to the impeding action of biological barriers. Among various therapeutic strategies applied for translocation of drug delivery across the blood-brain barrier (BBB), nanoformulations set an excellent platform for brain targeting by overcoming the biological and chemical barriers and protecting drug from efflux to promote the optimum therapeutic drug concentration in brain parenchyma tissues. Nanocarriers are the most widely studied delivery vehicles for BBB translocation with the efficiency of selectively targeting or exploiting inherent biological molecules, receptors, carriers or mechanisms of the brain.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional PTX formulations can cause adverse reactions, necessitating complicated pretreatments and long infusion times, which complicate patient care.
  • * New non-injection drug delivery systems for PTX (like oral, vaginal, implantable, transdermal, and intranasal methods) are being explored to improve convenience and reduce side effects associated with traditional administration methods.
View Article and Find Full Text PDF