Background: Increased intra-subject response time standard deviations (RT-SD) discriminate children with attention-deficit/hyperactivity disorder (ADHD) from healthy control subjects. The RT-SD is averaged over time; thus it does not provide information about the temporal structure of RT variability. We previously hypothesized that such increased variability might be related to slow spontaneous fluctuations in brain activity occurring with periods between 15 sec and 40 sec.
View Article and Find Full Text PDFExamination of spontaneous intrinsic brain activity is drawing increasing interest, thus methods for such analyses are rapidly evolving. Here we describe a novel measure, "network homogeneity", that allows for assessment of cohesiveness within a specified functional network, and apply it to resting-state fMRI data from adult ADHD and control participants. We examined the default mode network, a medial-wall based network characterized by high baseline activity that decreases during attention-demanding cognitive tasks.
View Article and Find Full Text PDFBackground: Pathophysiologic models of attention-deficit/hyperactivity disorder (ADHD) have focused on frontal-striatal circuitry with alternative hypotheses relatively unexplored. On the basis of evidence that negative interactions between frontal foci involved in cognitive control and the non-goal-directed "default-mode" network prevent attentional lapses, we hypothesized abnormalities in functional connectivity of these circuits in ADHD.
Methods: Resting-state blood oxygen level-dependent functional magnetic resonance imaging (fMRI) scans were obtained at 3.