Virtual screening (VS) is an outstanding cornerstone in the drug discovery pipeline. A variety of computational approaches, which are generally classified as ligand-based (LB) and structure-based (SB) techniques, exploit key structural and physicochemical properties of ligands and targets to enable the screening of virtual libraries in the search of active compounds. Though LB and SB methods have found widespread application in the discovery of novel drug-like candidates, their complementary natures have stimulated continued efforts toward the development of hybrid strategies that combine LB and SB techniques, integrating them in a holistic computational framework that exploits the available information of both ligand and target to enhance the success of drug discovery projects.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2020
In this paper, we investigated how different growth conditions (i.e., temperature, growth time, and composition) allows for trading off cost (i.
View Article and Find Full Text PDFNanostructured indium tin oxide (ITO) surfaces present an interesting yet unusual combination of properties (high electrical conductivity and optical transparency) at a high surface-to-volume ratio. Thus, previous studies presented nanostructured ITO electrodes as potentially suitable platforms for electrochemical biosensors, but still there is a lack of research on the optimization of preparation methods for such electrodes. We present a systematic study on the properties of nanostructured ITO electrodes prepared by physical deposition, where the substrate temperature was tuned for achieving the best combination of structural properties (namely electrical conductivity and optical transparency) and electrochemical performance.
View Article and Find Full Text PDFMiniaturizing potentiostats, keeping their cost low and yet preserving full measurement characteristics (e.g. bandwidth, determination of capacitive/inductive contribution to sensor's impedance and parallel screening) is still an unresolved challenge in bioelectronics.
View Article and Find Full Text PDFAmido-1,3,4-thiadiazoles have been identified as a novel structural class of potent and selective sphingosine-1-phosphate receptor subtype 1 agonists. Starting from a micromolar HTS hit with the help of an in-house homology model, robust structural-activity relationships were developed to yield compounds with good selectivity and excellent in vivo efficacy in rat models.
View Article and Find Full Text PDFA novel class of potent Syk inhibitors has been developed from rational design. Highly potent aminopyridine derivatives bearing a 4-trifluoromethyl-2-pyridyl motif and represented by compound 13b IC(50): 0.6 nM were identified.
View Article and Find Full Text PDFA series of aminopyrazines as inhibitors of Syk kinase activity and showing inhibition of LAD2 cells degranulation is described. Optimization of the carboxamide motif with aminomethylpiperidines provided high potency inhibiting Syk but low cellular activity. Amides of cis and trans adamantanol showed good inhibitory activity against Syk as well as remarkable activity in LAD2 cells degranulation assay.
View Article and Find Full Text PDF