A critical evaluation of strategies used for reducing start-up time and biological wastewater treatment using an inverse fluidized bed reactor (IFBR) was done. The start-up of an IFBR is one of the most important, time-consuming, and limiting steps in wastewater treatment using biofilm reactors. Evaluation of different strategies used by various researchers is helpful in future research works with this reactor.
View Article and Find Full Text PDFThe comparative performance of an inverse fluidized bed reactor (IFBR) having high density polyethylene beads as carrier materials for biofilm formation and a continuous stirred tank reactor (CSTR), both maintaining autotrophic denitrification using biogenic sulphur (ADBIOS) in the absence and presence of nickel (Ni), was studied. The reactors were compared in terms of NO-N and NO-N removal and SO-S production throughout the study. A simulated wastewater with an inlet NO-N concentration of 225 mg/L and a decreasing concentration of biogenic sulphur (bio-S) from 1.
View Article and Find Full Text PDFPresence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580).
View Article and Find Full Text PDFTowards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.
View Article and Find Full Text PDF