Publications by authors named "Maneesh Manohar"

Tumor microenvironment (TME) is a heterogeneous system consisting of both cellular and acellular components. The growth and progression of tumors rely greatly on the nature of TME, marking it as an important target in cancer immunotherapy. Lewis Lung Carcinoma (LLC) is an established murine lung cancer model representing immunologically 'cold' tumors characterized by very few infiltrated cytotoxic T-cells, high levels of Myeloid-Derived Suppressor Cells (MDSCs) and Tumor-Associated Macrophages (TAMs).

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is one of the challenging tumors to treat as it recurs, almost 100%, even after surgery, radiation, and chemotherapy. In many cases, recurrence happens within 2-3cm depth of the resected tumor margin, indicating the inefficacy of current anti-glioma drugs to penetrate deep into the brain tissue. Here, we report an injectable nanoparticle-gel system, capable of providing deep brain penetration of drug up to 4 cm, releasing in a sustained manner up to >15 days.

View Article and Find Full Text PDF

Orally delivered molecularly targeted small-molecule drugs play a significant role in managing cancer as a chronic disease. However, due to the poor oral bioavailability of some of these molecules, high-dose administration is required leading to dose-limiting toxicity especially when delivered daily for a long duration. Here, we report an oral nanoformulation for small-molecule multi-kinase inhibitor, sorafenib tosylate, showing nearly two fold enhancement in the oral bioavailability and enhanced therapeutic efficacy with a better safety profile compared to the current clinical formulation.

View Article and Find Full Text PDF

Background: Nanoparticle siRNA-conjugates are promising clinical therapeutics as indicated by recent US-FDA approval. In glioma stem cells (GSC), multiple stemness associated genes were found aberrant. We report intracranially injectable, multi-gene-targeted siRNA nanoparticle gel (NPG) for the combinatorial silencing of 3 aberrant genes, thus inhibiting the tumorogenic potential of GSCs.

View Article and Find Full Text PDF

tracking of transplanted stem cells to monitor their migration, biodistribution, and engraftment in the host tissue is important for assessing the efficacy of stem cell therapeutics. Here, we report a biomineral nanocontrast agent, iron doped calcium phosphate nanoparticles (nCP:Fe), for the tracking of stem cells in brain using magnetic resonance imaging (MRI). We have synthesized ∼100 nm sized nCP nanoparticles doped with 9.

View Article and Find Full Text PDF

Glioma stem cells (GSC) present a critical therapeutic challenge for glioblastoma multiforme (GBM). Drug screening against GSC demands development of novel in vitro and in vivo platforms that can mimic brain microenvironment and support GSC maintenance and tumorigenesis. Here, we report, a 3-dimensionel (3D) biomimetic macro-porous scaffold developed by incorporating hyaluronic acid, porcine brain extra cellular matrix (ECM) and growth factors that facilitates regeneration of GBM from primary GSCs, ex vivo and in vivo.

View Article and Find Full Text PDF