Publications by authors named "Maneesh Gupta"

Here, we present the complete genome sequence of type strain DSM33, a model organism for microbially induced calcium carbonate precipitation. This genome consists of a single 3.3-Mb chromosome and is an improvement upon draft genome sequences currently available in public databases.

View Article and Find Full Text PDF

While synthetic biology has advanced complex capabilities such as sensing and molecular synthesis in aqueous solutions, important applications may also be pursued for biological systems in solid materials. Harsh processing conditions used to produce many synthetic materials such as plastics make the incorporation of biological functionality challenging. One technology that shows promise in circumventing these issues is cell-free protein synthesis (CFPS), where core cellular functionality is reconstituted outside the cell.

View Article and Find Full Text PDF

Purpose: The MGMT (O-methylguanine-DNA methyltransferase) gene plays a crucial role in repairing DNA damage caused by alkylating agents, including those used in chemotherapy. Genetic and epigenetic alterations can influence the regulation of MGMT gene, which in turn may impact the response to concomitant chemoradiotherapy (CRT) in cervical cancer. The present study was undertaken to evaluate the correlation of such variations in MGMT gene with the treatment outcome of concomitant chemoradiotherapy (CRT) in cervical cancer.

View Article and Find Full Text PDF

Nature offers many examples of materials which exhibit exceptional properties due to hierarchical assembly of their constituents. In well-studied multi-cellular systems, such as the morpho butterfly, a visible indication of having ordered submicron features is given by the display of structural color. Detailed investigations of nature's designs have yielded mechanistic insights and led to the development of biomimetic materials at laboratory scales.

View Article and Find Full Text PDF

Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.

View Article and Find Full Text PDF

Context: Lung cancer pathological process involves cumulative effects exerted by gene polymorphism(s), epigenetic modifications, and alterations in DNA repair machinery. Further, DNA damage due to oxidative stress, chronic inflammation, and the interplay between genetic and environmental factors is also an etiologic milieu of this malignant disease.

Aims: The present study aims to assess the prognostic value of DNA repair, cytokines, and GST gene polymorphism in lung cancer patients who had not received any neoadjuvant therapy.

View Article and Find Full Text PDF

Microrheology based on video microscopy of embedded tracer particles has the potential to be used for high-throughput protein-based materials characterization. This potential is due to a number of characteristics of the techniques, including the suitability for measurement of low sample volumes, noninvasive and noncontact measurements, and the ability to set up a large number of samples for facile, sequential measurement. In addition to characterization of the bulk rheological properties of proteins in solution, for example, viscosity, microrheology can provide insight into the dynamics and self-assembly of protein-based materials as well as heterogeneities in the microenvironment being probed.

View Article and Find Full Text PDF

Microbes embedded in hydrogels comprise one form of living material. Discovering formulations that balance potentially competing for mechanical and biological properties in living hydrogels-for example, gel time of the hydrogel formulation and viability of the embedded organisms-can be challenging. In this study, a pipeline is developed to automate the characterization of the gel time of hydrogel formulations.

View Article and Find Full Text PDF

Cervical cancer is still one of the most prevalent cancers in women and a significant cause of mortality. Cytokine gene variants and socio-demographic characteristics have been reported as biomarkers for determining the cervical cancer risk in the Indian population. This study was designed to apply a machine learning-based model using these risk factors for better prognosis and prediction of cervical cancer.

View Article and Find Full Text PDF

Recent efforts have demonstrated that the morphology of ceramics can be manipulated to control both their deformation mechanism and mechanical performance. However, precise control of the ceramic nanostructure is still difficult to achieve. Biotemplating, leading to biomorphic materials, provides a facile route to manipulate the nanostructure of the resulting materials, and the use of melanin as a coating provides a new route to biotemplated materials.

View Article and Find Full Text PDF

The Humboldt squid is one of the fiercest marine predators thanks in part to its sucker ring teeth that are biopolymer blends of a protein isoform family called suckerin with compression strength that rivals silkworm silk. Here, we focus on the popular suckerin-12 isoform to understand what makes the secondary structure of this biopolymer different in water and the potential role of diverse physical and chemical cross-linkings. By choosing a salt post-treatment, in accordance with the Hofmeister series, we achieved film stability with salt annealing that is comparable to chemical cross-links.

View Article and Find Full Text PDF

Structural proteins such as "suckerins" present promising avenues for fabricating functional materials. Suckerins are a family of naturally occurring block copolymer-type proteins that comprise the sucker ring teeth of cephalopods and are known to self-assemble into supramolecular networks of nanoconfined β-sheets. Here, we report the characterization and controllable, nanoscale self-assembly of suckerin-12 (S12).

View Article and Find Full Text PDF

Cell-free systems offer a powerful way to deliver biochemical activity to the field without cold chain storage. These systems are capable of sensing as well as biosynthesis of useful molecules at the point of need. So far, cell-free protein synthesis (CFPS) reactions have been studied as aqueous solutions in test tubes or absorbed into paper or cloth.

View Article and Find Full Text PDF

Cell-free systems contain many proteins and metabolites required for complex functions such as transcription and translation or multi-step metabolic conversions. Research into expanding the delivery of these systems by drying or by embedding into other materials is enabling new applications in sensing, point-of-need manufacturing, and responsive materials. Meanwhile, silk fibroin from the silk worm, has received attention as a protective additive for dried enzyme formulations and as a material to build biocompatible hydrogels for controlled localization or delivery of biomolecular cargoes.

View Article and Find Full Text PDF

Minicollagens from cnidarian nematocysts are attractive potential building blocks for the creation of strong, lightweight and tough polymeric materials with the potential for dynamic and reconfigurable crosslinking to modulate functionality. In this study, the minicollagen-1 isoform was recombinantly expressed in bacteria, and a high throughput purification protocol was developed to generate milligram levels of pure protein without column chromatography. The resulting minicollagen-1 preparation demonstrated spectral properties similar to those observed with collagen and polyproline sequences as well as the ability to self-assemble into oriented fibers and bundles.

View Article and Find Full Text PDF

Organism engineering requires the selection of an appropriate chassis, editing its genome, combining traits from different source species, and controlling genes with synthetic circuits. When a strain is needed for a new target objective, for example, to produce a chemical-of-need, the best strains, genes, techniques, software, and expertise may be distributed across laboratories. Here, we report a project where we were assigned phloroglucinol (PG) as a target, and then combined unique capabilities across the United States Army, Navy, and Air Force service laboratories with the shared goal of designing an organism to produce this molecule.

View Article and Find Full Text PDF

The suckerin family of proteins, identified from the squid sucker ring teeth assembly, offers unique mechanical properties and potential advantages over other natural biomaterials. In this study, a small suckerin isoform, suckerin-12, is used to create enzymatically crosslinked, macro-scale hydrogels. Upon exposure to specific salt conditions, suckerin-12 hydrogels contracted into a condensed state where mechanical properties are found to be modulated by the salt anion present.

View Article and Find Full Text PDF

Mechanisms of biomaterial sclerotization in natural systems promise new insights into how the mechanical properties of engineered materials may be dynamically modulated. One such example involves the proteinaceous jaw of the marine sandworm, Nereis virens. Previously, the mechanical properties of the N.

View Article and Find Full Text PDF

Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality.

View Article and Find Full Text PDF

The Nvjp-1 protein is a key component in the jaws of Nereis virens, a species of marine worm. It contains over 25 mol % of histidine, which is believed to play a key role in the metal-coordinated cross-linking responsible for the structural stability and exceptional mechanical performance of the worm jaw. Understanding the nanoscale mechanism behind this cross-linking and its pathway in affecting the macroscopic mechanical behavior of the material is crucial to develop bioinspired mechanomutable materials based on Nvjp-1.

View Article and Find Full Text PDF

The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive.

View Article and Find Full Text PDF

Context • Osteoarthritis (OA) is one of the most prevalent chronic diseases of the musculoskeleton, causing functional disability among older adults. Management of OA includes conventional pharmacological treatments consisting primarily of nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, physiotherapy, and surgical procedures. The medications are not ideal therapeutic agents; NSAIDs in particular can cause serious side effects.

View Article and Find Full Text PDF

The custom scaffolds are deterministically fabricated via a microextrusion printing principle which enables the simultaneous incorporation of anatomical geometries, biomimetic physical cues, and spatially controlled biochemical gradients in a one-pot 3D manufacturing approach.

View Article and Find Full Text PDF