This study used a nitroaliphatic chemistry approach to synthesize a novel artemisinin-derived carba-dimer (AG-1) and determined its anti-proliferative effects in human normal and cancer cells. AG-1 treatments selectively inhibit proliferation of cancer cells compared to normal human fibroblasts. Compared to artemisinin, AG-1 is more toxic to human breast, prostate, head-neck, pancreas and skin cancer cells; 50% inhibition (IC) 123 µM in AG-1 vs.
View Article and Find Full Text PDFAltered metabolism is an important feature of many epileptic syndromes but has not been reported in Dravet syndrome (DS), a catastrophic childhood epilepsy associated with mutations in a voltage-activated sodium channel, Nav1.1 (SCN1A). To address this, we developed novel methodology to assess real-time changes in bioenergetics in zebrafish larvae between 4 and 6 d postfertilization (dpf).
View Article and Find Full Text PDFMutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b) have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish.
View Article and Find Full Text PDFNormal cell growth consists of two distinct phases, quiescence and proliferation. Quiescence, or G(0), is a reversible growth arrest in which cells retain the ability to reenter the proliferative cycle (G(1), S, G(2), and M). Although not actively dividing, quiescent cells are metabolically active and quiescence is actively maintained.
View Article and Find Full Text PDFChronological lifespan (CLS) is defined as the duration of quiescence in which normal cells retain the capacity to reenter the proliferative cycle. This study investigates whether hydroxytyrosol (HT), a naturally occurring polyphenol found in olives, extends CLS in normal human fibroblasts (NHFs). Quiescent NHFs cultured for a long duration (30-60 days) lose their capacity to repopulate.
View Article and Find Full Text PDFThe cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence.
View Article and Find Full Text PDFFree Radic Biol Med
December 2008
This study investigates the hypothesis that CuZn superoxide dismutase (SOD1) overexpression confers radioresistance to human glioma cells by regulating the late accumulation of reactive oxygen species (ROS) and the G(2)/M-checkpoint pathway. U118-9 human glioma cells (wild type, neo vector control, and stably overexpressing SOD1) were irradiated (0-10 Gy) and assayed for cell survival, cellular ROS levels, cell-cycle-phase distributions, and cyclin B1 expression. SOD1-overexpressing cells were radioresistant compared to wild-type (wt) and neo vector control (neo) cells.
View Article and Find Full Text PDF