Publications by authors named "Mandy Yam"

The chemical functionality of poly(methylenephosphine) n-Bu[MesP-CPh2]nH (2) is examined in reactions with two isoelectronic species, namely BH3 and CH3+. The potential reactivity of polymer 2 is modelled by examining the reactivity of molecular phosphines bearing similar substituents as the polymer. In particular, the phosphine-borane adducts Mes(Me)P(BH3)-CPh2H (4a) and Mes(Me)P(BH3)-CPh2SiMe2H (4b) are prepared from the reaction of BH3.

View Article and Find Full Text PDF

Phosphaalkenes (MesP=CRR': R = R' = Ph (1a); R = R' = 4-FC6H4 (1b); R = Ph, R' = 4-FC6H4 (1c); R = R' = 4-OMeC6H4 (1d); R = Ph, R' = 4-OMeC6H4 (1e); R = Ph, R' = 2-pyridyl (1f)) are prepared from the reaction of MesP(SiMe3)2 and O=CRR' in the presence of a trace of KOH or NaOH. The base-catalyzed phospha-Peterson reaction is quantitated by NMR spectroscopy, and isolated yields of phosphaalkene between 40 and 70% are obtained after vacuum distillation and/or recrystallization. The asymmetrically substituted phosphaalkenes (1c, 1e, 1f) form as 1:1 mixtures of E and Z isomers; however, X-ray crystallography reveals that the E isomers crystallize preferentially.

View Article and Find Full Text PDF

The secondary vinylphosphines Ar(F)P(H)C(R)[double bond]CH(2) [2a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 2b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 2c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)] were prepared by treating the corresponding dichlorophosphine Ar(F)PCl(2) (1) with H(2)C[double bond]C(R)MgBr. In the presence of catalytic base (DBU or DABCO) the vinylphosphines (2a-c) undergo quantitative 1,3-hydrogen migration over 3 d to give stable and isolable phosphaalkenes Ar(F)P=C(R)CH(3) (3a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 3b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 3c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)). Under analogous conditions, only 90% conversion is observed in the base-catalyzed rearrangement of MesP(H)C(CH(3))[double bond]CH(2) to MesP[double bond]C(CH(3))(2).

View Article and Find Full Text PDF

Addition polymerization, the most general method of preparation for organic polymers, has successfully been extended to P=C bonds. The polymerization of a phosphaalkene has been initiated by thermolysis or with alkyllithium reagents. The unprecedented poly(methylenephosphine)s are easily oxidized using oxygen or sulfur to give air stable macromolecules.

View Article and Find Full Text PDF