Publications by authors named "Mandy Waclawek"

Members of the HypC protein family are chaperone-like proteins that play a central role in the maturation of [NiFe]-hydrogenases (Hyd). Escherichia coli has a second copy of HypC, called HybG, and, as a component of the HypDEF maturation scaffold, these proteins help synthesize the NiFe-cofactor and guide the scaffold to its designated hydrogenase large subunit precursor. HypC is required to synthesize active Hyd-1 and Hyd-3, while HybG facilitates Hyd-2 and Hyd-1 synthesis.

View Article and Find Full Text PDF

Endoprotease-specific C-terminal processing is required to complete the maturation of the large subunit of [NiFe]-hydrogenases. This happens only after synthesis and insertion of the NiFe(CN)(2)CO cofactor by the Hyp maturases has occurred. It is assumed that in the absence of maturation the unprocessed species of the large subunit lacks cofactors.

View Article and Find Full Text PDF

[NiFe]-hydrogenases are multimeric proteins. The large subunit contains the NiFe(CN)(2)CO bimetallic active center and the small subunit contains Fe-S clusters. Biosynthesis and assembly of the NiFe(CN)(2)CO active center requires six Hyp accessory proteins.

View Article and Find Full Text PDF

Background: Escherichia coli synthesizes three membrane-bound molybdenum- and selenocysteine-containing formate dehydrogenases, as well as up to four membrane-bound [NiFe]-hydrogenases. Two of the formate dehydrogenases (Fdh-N and Fdh-O) and two of the hydrogenases (Hyd-1 and Hyd-2) have their respective catalytic subunits located in the periplasm and these enzymes have been shown previously to oxidize formate and hydrogen, respectively, and thus function in energy metabolism. Mutants unable to synthesize the [NiFe]-hydrogenases retain a H₂: benzyl viologen oxidoreductase activity.

View Article and Find Full Text PDF