Publications by authors named "Mandy Magbagbeolu"

The negative interference of treatments between the acetylcholinesterase inhibitor rivastigmine and the tau aggregation inhibitor hydromethylthionine mesylate (HMTM) has been reported in Line 1 tau-transgenic mice, which overexpress a truncated species of tau protein that is found in the core of paired helical filaments in Alzheimer´s disease (AD). However, little is known about whether such interactions could affect synapses in mice overexpressing tau carrying pathogenic mutations. Here, we have used Line 66 (L66) mice which overexpress full-length human tau carrying the P301S mutation as a model in which tau accumulates in synapses.

View Article and Find Full Text PDF

In clinical trials for Alzheimer's disease (AD), hydromethylthionine mesylate (HMTM) showed reduced efficacy when administered as an add-on to symptomatic treatments, while it produced a significant improvement of cognitive function when taken as monotherapy. Interference of cholinesterase inhibition with HMTM was observed also in a tau transgenic mouse model, where rivastigmine reduced the pharmacological activity of HMTM at multiple brain levels including hippocampal acetylcholine release, synaptosomal glutamate release and mitochondrial activity. Here, we examined the effect of HMTM, given alone or in combination with the acetylcholinesterase inhibitor, rivastigmine, at the level of expression of selected pre-synaptic proteins (syntaxin-1; SNAP-25, VAMP-2, synaptophysin-1, synapsin-1, α-synuclein) in brain tissue harvested from tau-transgenic Line 1 (L1) and wild-type mice using immunohistochemistry.

View Article and Find Full Text PDF

Alpha-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). Here, we explored the efficacy of N,N,N',N'-tetraethyl-10H-phenothiazine-3,7-diamine dihydrochloride (LETC), a protein aggregation inhibitor, on α-Syn aggregation. In both cellular models and transgenic mice, α-Syn aggregation was achieved by the overexpression of full-length human α-Syn fused with a signal sequence peptide.

View Article and Find Full Text PDF

The accumulation of α-synuclein (α-Syn) into Lewy bodies is a hallmark of synucleinopathies, a group of neurological disorders that include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Small oligomers as well as larger fibrils of α-Syn have been suggested to induce cell toxicity leading to a degenerative loss of neurones. A richer understanding of α-Syn aggregation in disease, however, requires the identification of the different α-Syn species and the characterisation of their biochemical properties.

View Article and Find Full Text PDF

The accumulation of alpha-synuclein (α-Syn) into Lewy bodies in cortical and subcortical regions has been linked to the pathogenesis of synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While there is a strong link between synuclein aggregates and the reduction in dopamine function in the emergence of PD, less is known about the consequences of α-Syn accumulation in glutamatergic neurons and how this could be exploited as a therapeutic target. Transgenic h-α-synL62 (L62) mice, in which synuclein aggregation is achieved through the expression of full-length human α-Syn fused with a signal sequence peptide, were used to characterise glutamatergic transmission using a combination of behavioural, immunoblotting, and histopathological approaches.

View Article and Find Full Text PDF

Abnormal aggregation of tau is the pathological hallmark of tauopathies including frontotemporal dementia (FTD). We have generated tau-transgenic mice that express the aggregation-prone P301S human tau (line 66). These mice present with early-onset, high tau load in brain and FTD-like behavioural deficiencies.

View Article and Find Full Text PDF

Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies.

View Article and Find Full Text PDF

Background: Symptomatic treatments of Alzheimer's Disease (AD) with cholinesterase inhibitors and/or memantine are relatively ineffective and there is a need for new treatments targeting the underlying pathology of AD. In most of the failed disease-modifying trials, patients have been allowed to continue taking symptomatic treatments at stable doses, under the assumption that they do not impair efficacy. In recently completed Phase 3 trials testing the tau aggregation inhibitor leuco-methylthioninium bis (hydromethanesulfonate) (LMTM), we found significant differences in treatment response according to whether patients were taking LMTM either as monotherapy or as an add-on to symptomatic treatments.

View Article and Find Full Text PDF

α-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). We have tested whether -tetramethyl-10-phenothiazine-3,7-diaminium bis(hydromethanesulfonate) (leuco-methylthioninium bis(hydromethanesulfonate); LMTM), a tau aggregation inhibitor, affects α-Syn aggregation and . Both cellular and transgenic models in which the expression of full-length human α-Syn (h-α-Syn) fused with a signal sequence peptide to promote α-Syn aggregation were used.

View Article and Find Full Text PDF

Given the repeated failure of amyloid-based approaches in Alzheimer's disease, there is increasing interest in tau-based therapeutics. Although methylthioninium (MT) treatment was found to be beneficial in tau transgenic models, the brain concentrations required to inhibit tau aggregation in vivo are unknown. The comparative efficacy of methylthioninium chloride (MTC) and leucomethylthioninium salts (LMTX; 5-75 mg/kg; oral administration for 3-8 weeks) was assessed in two novel transgenic tau mouse lines.

View Article and Find Full Text PDF

The molecular signatures of 20 severe cervical intraepithelial neoplasia (CIN3) cases and 10 cervical squamous cell cancers were determined to define cancer-related gene expression profiles. RNAs extracted from microdissected tissues were amplified by SMART technology and used as probes for hybridization of commercially available cDNA array filters comprising 1,176 cancer-related genes. Ninety-two differentially expressed genes were identified by comparison of pooled cDNA from CIN3 vs.

View Article and Find Full Text PDF