Harmful algal blooms (HABs) caused by the dinoflagellate Karenia brevis on the West Florida Shelf have become a nearly annual occurrence causing widespread ecological and economic harm. Effects range from minor respiratory irritation and localized fish kills to large-scale and long-term events causing massive mortalities to marine organisms. Reports of hypoxia on the shelf have been infrequent; however, there have been some indications that some HABs have been associated with localized hypoxia.
View Article and Find Full Text PDFAtlantic bluefin tuna (ABT) () travel long distances to spawn in oligotrophic regions of the Gulf of Mexico (GoM) which suggests these regions offer some unique benefit to offspring survival. To better understand how larval survival varies within the GoM a spatially explicit, Lagrangian, individual-based model was developed that simulates dispersal and mortality of ABT early life stages within realistic predator and prey fields during the spawning periods from 1993 to 2012. The model estimates that starvation is the largest cumulative source of mortality associated with an early critical period.
View Article and Find Full Text PDFThe Gulf of Mexico is an ecologically and economically important marine ecosystem that is affected by a variety of natural and anthropogenic pressures. These complex and interacting pressures, together with the dynamic environment of the Gulf, present challenges for the effective management of its resources. The recent adoption of Bayesian networks to ecology allows for the discovery and quantification of complex interactions from data after making only a few assumptions about observations of the system.
View Article and Find Full Text PDFManaged reef fish in the Atlantic Ocean of the southeastern United States (SEUS) support a multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish from harvest, to enhance productivity and reduce the potential for overfishing. We assessed spatiotemporal cues for spawning for six species from four reef fish families, using data on individual spawning condition collected by over three decades of regional fishery-independent reef fish surveys, combined with a series of predictors derived from bathymetric features.
View Article and Find Full Text PDFMany species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness.
View Article and Find Full Text PDFThe Gulf of Mexico is one of the most ecologically and economically valuable marine ecosystems in the world and is affected by a variety of natural and anthropogenic phenomena including climate, hurricanes, coastal development, agricultural runoff, oil spills, and fishing. These complex and interacting stressors, together with the highly dynamic nature of this ecosystem, present challenges for the effective management of its resources. We analyze a compilation of over 100 indicators representing physical, biological, and economic aspects of the Gulf of Mexico and find that an ecosystem-wide reorganization occurred in the mid-1990s.
View Article and Find Full Text PDFThere is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks.
View Article and Find Full Text PDFBackground: Many fishes are known to spawn at distinct geomorphological features such as submerged capes or "promontories," and the widespread use of these sites for spawning must imply some evolutionary advantage. Spawning at these capes is thought to result in rapid offshore transport of eggs, thereby reducing predation levels and facilitating dispersal to areas of suitable habitat.
Methodology/principal Findings: To test this "off-reef transport" hypothesis, we use a hydrodynamic model and explore the effects of topography on currents at submerged capes where spawning occurs and at similar capes where spawning does not occur, along the Mesoamerican Barrier Reef.
Distinguishing management effects from the inherent variability in a system is a key consideration in assessing reserve efficacy. Here, we demonstrate how seascape heterogeneity, defined as the spatial configuration and composition of coral reef habitats, can mask our ability to discern reserve effects. We then test the application of a landscape approach, utilizing advances in benthic habitat mapping and GIS techniques, to quantify this heterogeneity and alleviate the confounding influence during reserve assessment.
View Article and Find Full Text PDF