Publications by authors named "Mandy Ahlborg"

The availability of magnetic nanoparticles (MNPs) with medical approval for human intervention is fundamental to the clinical translation of magnetic particle imaging (MPI). In this work, we thoroughly evaluate and compare the magnetic properties of an magnetic resonance imaging (MRI) approved tracer to validate its performance for MPI in future human trials.We analyze whether the recently approved MRI tracer Resotran is suitable for MPI.

View Article and Find Full Text PDF

Background: Magnetic particle imaging offers far-reaching potential with a unique range of applications.

Objectives: Identification of application scenarios with added value for clinical use.

Methods: Overview of previous application scenarios in phantom and small animal models, evaluation of dual-use potential.

View Article and Find Full Text PDF

Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a higher accuracy for diagnosis and treatment of vascular diseases. Different techniques to make devices MPI visible have been introduced so far, such as varnish markings or filling of balloons.

View Article and Find Full Text PDF

The purpose of this work was to develop instrument markers that are visible in both magnetic particle imaging (MPI) and magnetic resonance imaging (MRI). The instrument markers were based on two different magnetic nanoparticle types (synthesized in-house KLB and commercial Bayoxide E8706). Coatings containing one of both particle types were fabricated and measured with a magnetic particle spectrometer (MPS) to estimate their MPI performance.

View Article and Find Full Text PDF

Purpose: To evaluate heating of a redilatable stent for the treatment of aortic coarctation in neonates and small children in the new imaging modality magnetic particle imaging and established magnetic resonance imaging.

Materials And Methods: The cobalt-chromium stent (BabyStent, OSYPKA AG, Rheinfelden, Germany) has a stent design which allows for redilatation and adjustment of the diameter from 6 to 16 mm for a use in aortic coarctation. The stent loses its radial integrity while opening at predetermined breaking points at a diameter of 14 mm or 16 mm, respectively.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is a new medical imaging technique that enables three-dimensional real-time imaging of a magnetic tracer material. Although it is not yet in clinical use, it is highly promising, especially for vascular and interventional imaging. The advantages of MPI are that no ionizing radiation is necessary, its high sensitivity enables the detection of very small amounts of the tracer material, and its high temporal resolution enables real-time imaging, which makes MPI suitable as an interventional imaging technique.

View Article and Find Full Text PDF

Magnetic Particle Imaging (MPI) is an emerging technology in the field of (pre)clinical imaging. The acquisition of a particle signal is realized along specific sampling trajectories covering a defined field of view (FOV). In a system matrix (SM) based reconstruction procedure, the commonly used acquisition path in MPI is a Lissajous trajectory.

View Article and Find Full Text PDF

Magnetic Particle Imaging is a new medical imaging modality, which detects superparamagnetic iron oxide nanoparticles. The particles are excited by magnetic fields. Most scanners have a tube-like measurement field and therefore, both the field of view and the object size are limited.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs' response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution.

View Article and Find Full Text PDF

The magnetic particle imaging (MPI) technology is a new imaging technique featuring an excellent possibility to detect iron oxide based nanoparticle accumulations in vivo. The excitation of the particles and in turn the signal generation in MPI are achieved by using oscillating magnetic fields. In order to realize a spatial encoding, a field-free point (FFP) is steered through the field of view (FOV).

View Article and Find Full Text PDF