Publications by authors named "Mandula O"

Article Synopsis
  • The study introduces a compact 3D diffractive microscope designed for long-term observation of developing organisms within a cell incubator without moving parts, making it easy to use with standard cell culture containers.
  • The microscope images large specimens (over 100µ in size) at subcellular resolution by reconstructing optical properties using intensity-only images taken from various angles with an LED array, aided by a deep-learning neural network.
  • This technology was successfully applied to time-lapse 3D imaging of preimplantation mouse embryos over six days, allowing for detailed insights into embryo development and viability without the need for labels.
View Article and Find Full Text PDF

A lens-free microscope is a simple imaging device performing in-line holographic measurements. In the absence of focusing optics, a reconstruction algorithm is used to retrieve the sample image by solving the inverse problem. This is usually performed by optimization algorithms relying on gradient computation.

View Article and Find Full Text PDF

We propose a simple and compact microscope combining phase imaging with multi-color fluorescence using a standard bright-field objective. The phase image of the sample is reconstructed from a single, approximately 100 μm out-of-focus image taken under semi-coherent illumination, while fluorescence is recorded in-focus in epi-fluorescence geometry. The reproducible changes of the focus are achieved with specifically introduced chromatic aberration in the imaging system.

View Article and Find Full Text PDF

The Quantitative phase imaging methods have several advantages when it comes to monitoring cultures of adherent mammalian cells. Because of low photo-toxicity and no need for staining, we can follow cells in a minimally invasive way over a long period of time. The ability to measure the optical path difference in a quantitative manner allows the measurement of the cell dry mass, an important metric for studying the growth kinetics of mammalian cells.

View Article and Find Full Text PDF

The structural and functional organization of biological tissues relies on the intricate interplay between chemical and mechanical signaling. Whereas the role of constant and transient mechanical perturbations is generally accepted, several studies recently highlighted the existence of long-range mechanical excitations (i.e.

View Article and Find Full Text PDF

Thanks to a novel three-dimensional imaging platform based on lens-free microscopy, it is possible to perform multi-angle acquisitions and holographic reconstructions of 3D cell cultures directly into the incubator. Being able of reconstructing volumes as large as ~5 mm over a period of time covering several days, allows us to observe a broad range of migration strategies only present in 3D environment, whether it is single cell migration, collective migrations of cells and dispersal of cells. In addition we are able to distinguish new interesting phenomena, e.

View Article and Find Full Text PDF

We propose non-negative matrix factorisation with iterative restarts (iNMF) to model a noisy dataset of highly overlapping fluorophores with intermittent intensities. We can recover high-resolution images of individual sources from the optimised model, despite their high mutual overlap in the original data. Each source can have an arbitrary, unknown shape of the PSF and blinking behaviour.

View Article and Find Full Text PDF

Structured illumination microscopy can achieve super-resolution in fluorescence imaging. The sample is illuminated with periodic light patterns, and a series of images are acquired for different pattern positions, also called phases. From these a super-resolution image can be computed.

View Article and Find Full Text PDF

Structured illumination microscopy in thick fluorescent samples is a challenging task. The out-of-focus fluorescence background deteriorates the illumination pattern and the reconstructed images suffer from influence of noise. We present a combination of structured illumination microscopy with line scanning.

View Article and Find Full Text PDF

The spatial distribution of the target (t-)SNARE proteins (syntaxin and SNAP-25) on the plasma membrane has been extensively characterized. However, the protein conformations and interactions of the two t-SNAREs in situ remain poorly defined. By using super-resolution optical techniques and fluorescence lifetime imaging microscopy, we observed that within the t-SNARE clusters syntaxin and SNAP-25 molecules interact, forming two distinct conformations of the t-SNARE binary intermediate.

View Article and Find Full Text PDF

Due to diffraction, the resolution of imaging emitted light in a fluorescence microscope is limited to about 200 nm in the lateral direction. Resolution improvement by a factor of two can be achieved using structured illumination, where a fine grating is projected onto the sample, and the final image is reconstructed from a set of images taken at different grating positions. Here we demonstrate that with the help of a spatial light modulator, this technique can be used for imaging slowly moving structures in living cells.

View Article and Find Full Text PDF