Cometary comae are a mixture of gas and ice-covered dust. Processing on the surface and in the coma change the composition of ice on dust grains relative to that of the nucleus. As the ice on dust grains sublimates, the local coma composition changes.
View Article and Find Full Text PDFJupiter's moon Io hosts extensive volcanism, driven by tidal heating. The isotopic composition of Io's inventory of volatile chemical elements, including sulfur and chlorine, reflects its outgassing and mass-loss history and thus records information about its evolution. We used submillimeter observations of Io's atmosphere to measure sulfur isotopes in gaseous sulfur dioxide and sulfur monoxide, and chlorine isotopes in gaseous sodium chloride and potassium chloride.
View Article and Find Full Text PDFMany plans are in preparation to land robotic missions on the surface of the Moon, which will pave the way to return humans to the lunar surface and set the stage for an ongoing human presence. Artemis is a NASA-led international effort to return humans to the Moon. One of the goals of Artemis is to use innovative technologies to address priority science objectives.
View Article and Find Full Text PDFMany of the NASA spacecraft sent into Earth orbit and throughout the Solar System are competitively selected and led by principal investigators (PIs). These senior scientists are responsible for directing research activities, managing the use of funds, and reporting to the funding agency. Additionally, the European Space Agency (ESA) has competitively selected missions that are led by ESA-nominated project scientists and include instruments that are overseen by PIs.
View Article and Find Full Text PDFJ Geophys Res Space Phys
December 2022
We analyze observations of a solar energetic particle (SEP) event at Rosetta's target comet 67P/Churyumov-Gerasimenko during 6-10 March 2015. The comet was 2.15 AU from the Sun, with the Rosetta spacecraft approximately 70 km from the nucleus placing it deep inside the comet's coma and allowing us to study its response.
View Article and Find Full Text PDFA detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.
View Article and Find Full Text PDFThe mysteries of the Uranus system can be unlocked through interdisciplinary exploration.
View Article and Find Full Text PDFThe environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency's Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet's orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.
View Article and Find Full Text PDFReturning humans to the Moon presents an unprecedented opportunity to determine the origin of volatiles stored in the permanently shaded regions (PSRs), which trace the history of lunar volcanic activity, solar wind surface chemistry, and volatile delivery to the Earth and Moon through impacts of comets, asteroids, and micrometeoroids. So far, the source of the volatiles sampled by the Lunar Crater Observation and Sensing Satellite (LCROSS) plume has remained undetermined. We show here that the source could not be volcanic outgassing and the composition is best explained by cometary impacts.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2020
The international planetary science community met in London in January 2020, united in the goal of realizing the first dedicated robotic mission to the distant ice giants, Uranus and Neptune, as the only major class of solar system planet yet to be comprehensively explored. Ice-giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests to our understanding of exotic water-rich planetary interiors, dynamic and frigid atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue on ice giant system exploration at the start of the 2020s.
View Article and Find Full Text PDFContext: Pre-equinox measurements of comet 67P/Churyumov-Gerasimenko with the mass spectrometer ROSINA/DFMS on board the Rosetta spacecraft revealed a strongly heterogeneous coma. The abundances of major and various minor volatile species were found to depend on the latitude and longitude of the nadir point of the spacecraft. The observed time variability of coma species remained consistent for about three months up to equinox.
View Article and Find Full Text PDFAstron Astrophys
October 2019
Context: Collisions between cometary neutrals in the inner coma of a comet and cometary ions that have been picked up into the solar wind flow and return to the coma lead to the formation of a broad inner boundary known as a collisionopause. This boundary is produced by a combination of charge transfer and chemical reactions, both of which are important at the location of the collisionopause boundary. Four spacecraft measured ion densities and velocities in the inner region of comets, exploring the part of the coma where an ion-neutral collisionopause boundary is expected to form.
View Article and Find Full Text PDFThe Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O in a cometary environment. The large relative abundance of O in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets.
View Article and Find Full Text PDFPrevious modeling studies of Titan's dayside ionosphere predict electron number densities that are roughly a factor of 2 higher than those observed by the RPWS/Langmuir probe. The issue can equivalently be described as the ratio between the calculated electron production rates and the square of the observed electron number densities resulting in roughly a factor of 4 higher effective recombination coefficient than expected from the ion composition and the electron temperature. Here we make an extended reassessment of Titan's dayside ionization balance, focusing on 34 flybys between TA and T120.
View Article and Find Full Text PDFIn light of the recent flyby measurements, we present a coupled ion-neutral-photochemistry model developed for simulating the atmosphere of Pluto. Our model results closely match the observed density profiles of CH, N and the C hydrocarbons in the altitude range where available measurements are most accurate (above ~ 100-200 km). We found a high eddy coefficient of 10 cm s from the surface to an altitude of 150 km, and 3 × 10 cm s above 150 km for Pluto's atmosphere.
View Article and Find Full Text PDFMon Not R Astron Soc
November 2017
We have converted our Titan one-dimensional photochemical model to simulate the photo- chemistry of Pluto's atmosphere and include condensation and aerosol trapping in the model. We find that condensation and aerosol trapping are important processes in producing the HCN altitude profile observed by the Atacama Large Millimeter Array (ALMA). The nitrogen iso- tope chemistry in Pluto's atmosphere does not appear to significantly fractionate the isotope ratio between N and HCN as occurs at Titan.
View Article and Find Full Text PDFEffects of solar EUV on positive ions and heavy negative charge carriers (molecular ions, aerosol, and/or dust) in Titan's ionosphere are studied over the course of almost 12 years, including 78 flybys below 1400 km altitude between TA (October 2004) and T120 (June 2016). The Radio and Plasma Wave Science/Langmuir Probe-measured ion charge densities (normalized by the solar zenith angle) show statistically significant variations with respect to the solar EUV flux. Dayside charge densities increase by a factor of ≈2 from solar minimum to maximum, while nightside charge densities are found to anticorrelate with the EUV flux and decrease by a factor of ≈3-4.
View Article and Find Full Text PDFJ Geophys Res Space Phys
October 2016
The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below ~1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere ( / ≤ 0.
View Article and Find Full Text PDFThe origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen.
View Article and Find Full Text PDFCometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet.
View Article and Find Full Text PDFComets play a dual role in understanding the formation and evolution of the solar system. First, the composition of comets provides information about the origin of the giant planets and their moons because comets formed early and their composition is not expected to have evolved significantly since formation. They, therefore serve as a record of conditions during the early stages of solar system formation.
View Article and Find Full Text PDFWe present here a comparative planetology study of evolution of N/N at Mars and Titan. Studies show that N/N can evolve a great deal as a result of escape in the atmosphere of Mars, but not in Titan's atmosphere. We explain this through the existence of an upper limit to the amount of fractionation allowed to occur due to escape that is a function of the escape flux and the column density of nitrogen.
View Article and Find Full Text PDFThe ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including C/C and N/N, have been measured or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes.
View Article and Find Full Text PDFThe origin of Titan's nitrogen-rich atmosphere is thought to be ammonia ice, but this has not yet been confirmed. Furthermore, it is uncertain whether the building blocks of Titan formed within the Saturnian subnebula or in the colder protosolar nebula (PSN). Recent measurements of the nitrogen isotope ratio in cometary ammonia, combined with evolutionary constraints on the nitrogen isotopes in Titan's atmosphere provide firm evidence that the nitrogen in Titan's atmosphere must have originated as ammonia ice formed in the PSN under conditions similar to that of cometary formation.
View Article and Find Full Text PDFResearch in cave environments has many applications: studying local hydrogeologic activity, paleoclimate studies, analyzing white nose syndrome in bat populations, analogs for underground atmospheres in mining facilities, carbon sequestration efforts, and terrestrial analogs for planetary caves. The atmospheres of many caves contain tracers of current geological and biological activity, but up to this point, in situ studies have been limited to sensors that monitor individual components of the cave atmosphere. A prototype cave mass spectrometer system was assembled from commercial off-the-shelf parts to conduct surveys of atmospheric compositions inside four local Texas caves and to perform atmospheric analysis of two aquifer wellheads to a depth of 60 m.
View Article and Find Full Text PDF