Publications by authors named "Mandon J"

Dual-comb spectroscopy can provide broad spectral bandwidth and high spectral resolution in a short acquisition time, enabling time-resolved measurements. Specifically, spectroscopy in the mid-infrared wavelength range is of particular interest, since most of the molecules have their strongest rotational-vibrational transitions in this "fingerprint" region. Here we report time-resolved mid-infrared dual-comb spectroscopy, covering ~300 nm bandwidth around 3.

View Article and Find Full Text PDF

We demonstrate an absolute-frequency-calibrated mid-infrared dual-comb spectrometer by using a reference absorption cell. The source is based on a singly-resonant OPO containing two MgO:PPLN crystals in a common ring cavity, synchronously pumped by two mode-locked Yb-fiber lasers. The repetition-rate of the two pumps are stabilized while their offset frequencies and the OPO cavity length are not actively controlled.

View Article and Find Full Text PDF

Nitrate and ammonia deferentially modulate primary metabolism during the hypersensitive response in tobacco. In this study, tobacco RNAi lines with low nitrite reductase (NiRr) levels were used to investigate the roles of nitrite and nitric oxide (NO) in this process. The lines accumulate NO2-, with increased NO generation, but allow sufficient reduction to NH4+ to maintain plant viability.

View Article and Find Full Text PDF

Collision-induced absorption between O2 and CO2 molecules associated with the a1Δg (v = 1) ← X3Σ-g (v = 0) band of oxygen around 1060 nm was measured using cavity ring-down spectroscopy. The lineshape for this transition is measured for the first time, and the integrated cross-section is found to be smaller than the only previous report. For pure oxygen, we find an integrated absorption value of (2.

View Article and Find Full Text PDF

In the field of laser-based absorption spectroscopy, off-axis integrated cavity output spectroscopy is considered to be a sensitive and robust method, employing a simple optical design. However, one of the major drawbacks of non-mode-matched cavities combined with highly reflective mirrors (>99.98%) is its low output intensity.

View Article and Find Full Text PDF

We employed a single-mode, widely tunable (~300 cm) external-cavity quantum cascade laser operating around 8 µm for broadband direct absorption spectroscopy and wavelength modulation spectroscopy where a modulation frequency of 50 kHz was employed with high modulation amplitudes of up to 10 GHz. Using a compact multipass cell, we measured the entire molecular absorption band of acetone at ~7.4 µm with a spectral resolution of ~1 cm.

View Article and Find Full Text PDF

Despite the established importance of nitric oxide (NO) in many physiological and molecular processes in plants, most methods for quantifying NO are open to criticism This reflects the differing methods either lacking specificity or sensitivity, or even from an undue dependence of results on experimental conditions (i.e., chemical concentrations, pH, etc.

View Article and Find Full Text PDF

A 3D ray tracing model is used to simulate optical reinjection in a nonresonant optical cavity, for off-axis integrated cavity output spectroscopy. The optical cavities are optimized for maximum intensity enhancement factors via a grid search and a genetic algorithm. Intensity enhancement factors up to 1400 are found for short cavities (3 cm) and up to 101 for long cavities (50 cm).

View Article and Find Full Text PDF

Nitric oxide (NO) is a key messenger in plant stress responses but its exact role in drought response remains unclear. To investigate the role of NO in drought response we employed transgenic barley plants (UHb) overexpressing the barley non-symbiotic hemoglobin gene HvHb1 that oxidizes NO to NO. Reduced NO production under drought conditions in UHb plants was associated with increased drought tolerance.

View Article and Find Full Text PDF

Increasing demand for field instruments designed to measure gas composition has strongly promoted the development of robust, miniaturized and low-cost handheld absorption spectrometers in the mid-infrared. Efforts thus far have focused on miniaturizing individual components. However, the optical absorption path that the light beam travels through the sample defines the length of the gas cell and has so far limited miniaturization.

View Article and Find Full Text PDF

Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B.

View Article and Find Full Text PDF

Nitric oxide (NO) plays an important role in plant signaling and in response to various stress conditions. Therefore, real-time measurements of NO production provide better insights into understanding plant processes and can help developing strategies to improve food production and postharvest quality. Using laser-based spectroscopic methods, sensitive, online, in planta measurements of plant-pathogen interactions are possible.

View Article and Find Full Text PDF

The present investigation uses proton transfer reaction mass spectrometry (PTR-MS) combined with multivariate and univariate statistical analyses to study potential biomarkers for altered metabolism in urine due to strenuous walking. Urine samples, in concurrence with breath and blood samples, were taken from 51 participants (23 controls, 11 type-1 diabetes, 17 type-2 diabetes) during the Dutch endurance walking event, the . Multivariate analysis allowed for discrimination of before and after exercise for all three groups (control, type-1 and type-2 diabetes) and on three out of 4 days.

View Article and Find Full Text PDF

We demonstrate a two-crystal mid-infrared dual-wavelength optical parametric oscillator, synchronously pumped by a high power femtosecond Yb:fiber laser. The singly-resonant ring cavity, containing two periodically poled lithium niobate crystals, is capable of generating two synchronized idler wavelengths, independently tunable over 30 THz in the 2.9 - 4.

View Article and Find Full Text PDF

We combine an external cavity diode laser with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) using current modulation. With a finesse of 1600, we demonstrate noise equivalent absorption sensitivities of 4.1 x 10(-10) cm(-1) Hz(-1/2), resulting in sub-ppbv detection limits for Doppler-broadened transitions of CH(4) at 6132.

View Article and Find Full Text PDF

We present the real-time monitoring of hydrogen cyanide (HCN) production from Pseudomonas aeruginosa (P. aeruginosa) strains in vitro, using laser-based photoacoustic spectroscopy. Simultaneously, the production of ammonia (NH3) was measured, and the influence of different factors (e.

View Article and Find Full Text PDF

We report on a detailed model of an improved three mirror off-axis integrated cavity output spectroscopy (OA-ICOS) setup, which re-injects the light reflected by the optical cavity. The model simulates the impact of design parameters on instrument sensitivity and can be used for any off-axis configuration. We demonstrate the application of this model for the real-time detection of ethylene with a pulsed quantum cascade laser (QCL).

View Article and Find Full Text PDF

We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.

View Article and Find Full Text PDF

Objective: To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions.

Methods: Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands.

View Article and Find Full Text PDF

Non-symbiotic hemoglobin (nsHb) genes are ubiquitous in plants, but their biological functions have mostly been studied in model plant species rather than in crops. nsHb influences cell signaling and metabolism by modulating the levels of nitric oxide (NO). Class 1 nsHb is upregulated under hypoxia and is involved in various biotic and abiotic stress responses.

View Article and Find Full Text PDF

A versatile, continuous wave, optical parametric oscillator is used in combination with photoacoustic spectroscopy for long-term trace gas experiments of volatile compounds emitted by biological samples. The optical parametric oscillator-based spectrometer (wavelength near 3 μm, 8-MHz linewidth, output power ∼1 W) is successfully tested for the detection of hydrogen cyanide (HCN) emission from clover leaves, and Pseudomonas bacteria; in addition, the presence of HCN in exhaled human breath is measured. For specific experiments, the spectrometer is operated continuously up to 10 days and has a detection limit of 0.

View Article and Find Full Text PDF

Nitric oxide (NO) is a key mediator in the pathophysiology of septic shock that can be measured in exhaled breath. To assess whether a pulmonary infection itself or systemic inflammation is responsible for NO production, we determined exhaled NO in ventilated patients with respiratory and non-respiratory septic shock and compared it with the concentration in ventilated intensive care patients without systemic inflammation. In addition, the change of NO production over time and correlations with haemodynamic instability were evaluated.

View Article and Find Full Text PDF

There is still an unexplored potential for exhaled nitric oxide (NO) in many clinical applications. This study presents an overview of the currently available methods for monitoring NO in exhaled breath and the use of the modelling of NO production and transport in the lung in clinical practice. Three technologies are described, namely chemiluminescence, electrochemical sensing and laser-based detection with their advantages and limitations.

View Article and Find Full Text PDF

Background And Aims: After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention.

View Article and Find Full Text PDF