This study investigated weathering performance of an HDPE wood plastic composite reinforced with extracted or delignified wood flour (WF). The wood flour was pre-extracted with three different solvents, toluene/ethanol (TE), acetone/water (AW), and hot water (HW), or sodium chlorite/acetic acid. The spectral properties of the composites before and after artificial weathering under accelerated conditions were characterized by Fourier transform infrared (FTIR) spectroscopy, the surface color parameters were analyzed using colorimetry, and the mechanical properties were determined by a flexural test.
View Article and Find Full Text PDFResearch and development of the renewable nanomaterial cellulose nanofibrils (CNFs) has received considerable attention. The effect of drying on the surface energy of CNFs was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying.
View Article and Find Full Text PDFIn this study the capacity of sorbents prepared from juniper wood (JW) and bark (JB) to adsorb cadmium (Cd) from aqueous solutions at different pH values was compared. Adsorption behavior was characterized through adsorption kinetics, adsorption isotherms, and adsorption edge experiments. Results from kinetics and isotherm experiments showed that JB (76.
View Article and Find Full Text PDFEnviron Sci Technol
August 2005
Inorganic/organic hybrid adsorbents for removing orthophosphate from water were prepared by lanthanum (La) treatment of bark fiber, a lignocellulosic material obtained from juniper (Juniperus monosperma). The La was anchored to the juniper bark (JB) fiber by ion exchange with Ca in the bark and was responsible for removing orthophosphate. Two La concentrations (0.
View Article and Find Full Text PDFEnviron Sci Technol
February 2004
Adsorption of orthophosphate anions in aqueous solution by cationized milled solid wood residues was characterized as a function of sorbate-to-sorbent ratio (approximately equal to 0.001-2.58 mmol of P/g substrate), pH (3-9), ionic strength, I (no I control; 0.
View Article and Find Full Text PDF