We demonstrate a transcriptional regulatory design algorithm that can boost expression in yeast and mammalian cell lines. The system consists of a simplified transcriptional architecture composed of a minimal core promoter and a synthetic upstream regulatory region (sURS) composed of up to three motifs selected from a list of 41 motifs conserved in the eukaryotic lineage. The sURS system was first characterized using an oligo-library containing 189,990 variants.
View Article and Find Full Text PDFThe breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.
View Article and Find Full Text PDFThe ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells.
View Article and Find Full Text PDFThe T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4 T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCRβ sequence sets.
View Article and Find Full Text PDFCluster of differentiation (CD4) T cells consist of multiple subtypes, defined by expression of lineage-specific transcription factors, that contribute to the control of infectious diseases by providing help to immune and nonimmune target cells. In the current study, we examined the role of B cell lymphoma (Bcl)-6, a transcriptional repressor and master regulator of T follicular helper cell differentiation, in T cell-mediated host defense against intestinal and systemic parasitic infections. We demonstrate that while Bcl-6 expression by CD4 T cells is critical for antibody-mediated protective immunity against secondary infection with the nematode Heligmosoides polygyrus bakeri, it paradoxically compromises worm expulsion during primary infection by limiting the generation of interleukin-10 (IL-10)-producing Gata3 T helper 2 cells.
View Article and Find Full Text PDFLymphoid organs are unusual multicellular tissues: they are densely packed, but the lymphocytes trafficking through them are actively moving. We hypothesize that the intriguing ability of lymphocytes to avoid jamming and clogging is in part attributable to the dynamic shape changes that cells undergo when they move. In this work, we test this hypothesis by investigating an idealized system, namely, the flow of self-propelled, oscillating particles passing through a narrow constriction in two dimensions (2D), using numerical simulations.
View Article and Find Full Text PDFNeutrophils are among the fastest-moving immune cells. Their speed is critical to their function as 'first responder' cells at sites of damage or infection, and it has been postulated that the unique segmented nucleus of neutrophils functions to assist their rapid migration. Here, we tested this hypothesis by imaging primary human neutrophils traversing narrow channels in custom-designed microfluidic devices.
View Article and Find Full Text PDFObjectives: To assess the frequency of anterolateral ligament (ALL) tears and ramp lesions (RL) detected with MRI in patients with anterior cruciate ligament (ACL) tears and to describe associated injuries indicative for these lesions.
Methods: In this retrospective study, 164 patients with surgically verified ACL tears were included. Preoperative MRI scans were reviewed for ALL tears and different types of RL.
Glycogen, the branched polymer of glucose is found mainly in the liver and muscle in mammals. Along with several other proteins, glycogen forms separate cellular organelles, and particles in cells. Glycogen particles in the liver have a special metabolic and also regulatory connection to the intracellular endomembrane system, particularly the endoplasmic reticulum.
View Article and Find Full Text PDFBackground: Pancreatic cancer is despite modern diagnostic tools and treatment regimen associated with poor outcome. Many patients show cachexia and sarcopenia.
Methods: In a retrospective analysis the SMI (cm²/m²) was measured by determining the skelettal muscle area in a computed tomography image at lumbar vertebrae 3.
There is a long-standing assumption that naive CD4 and CD8 T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the β-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes.
View Article and Find Full Text PDFWe report the real-time response of to lactoferricin-derived antimicrobial peptides (AMPs) on length scales bridging microscopic cell sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multiscale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than 3 s-much faster than previously considered. Final intracellular AMP concentrations of ∼80-100 mM suggest an efficient obstruction of physiologically important processes as the primary cause of bacterial killing.
View Article and Find Full Text PDFWe coupled the antimicrobial activity of two well-studied lactoferricin derivatives, LF11-215 and LF11-324, in and different lipid-only mimics of its cytoplasmic membrane using a common thermodynamic framework for peptide partitioning. In particular, we combined an improved analysis of microdilution assays with ζ-potential measurements, which allowed us to discriminate between the maximum number of surface-adsorbed peptides and peptides fully partitioned into the bacteria. At the same time, we measured the partitioning of the peptides into vesicles composed of phosphatidylethanolamine (PE), phosphatidylgylcerol (PG), and cardiolipin (CL) mixtures using tryptophan fluorescence and determined their membrane activity using a dye leakage assay and small-angle X-ray scattering.
View Article and Find Full Text PDFCD4 T cells have a remarkable potential to differentiate into diverse effector lineages following activation. Here, we probe the heterogeneity present among naive CD4 T cells before encountering their cognate antigen to ask whether their effector potential is modulated by pre-existing transcriptional and chromatin landscape differences. Single-cell RNA sequencing shows that key drivers of variability are genes involved in T cell receptor (TCR) signaling.
View Article and Find Full Text PDFA previously reported multi-scale model for (ultra-)small-angle X-ray (USAXS/SAXS) and (very) small-angle neutron scattering (VSANS/SANS) of live was revised on the basis of compositional/metabolomic and ultrastructural constraints. The cellular body is modeled, as previously described, by an ellipsoid with multiple shells. However, scattering originating from flagella was replaced by a term accounting for the oligosaccharide cores of the lipopolysaccharide leaflet of the outer membrane including its cross-term with the cellular body.
View Article and Find Full Text PDFStudies in murine models show that subthreshold TCR interactions with self-peptide are required for thymic development and peripheral survival of naïve T cells. Recently, differences in the strength of tonic TCR interactions with self-peptide, as read-out by cell surface levels of CD5, were associated with distinct effector potentials among sorted populations of T cells in mice. However, whether CD5 can also be used to parse functional heterogeneity among human T cells is less clear.
View Article and Find Full Text PDFMutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8 mice have a profound type 2 CD4 helper T (T2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-T2 stimuli.
View Article and Find Full Text PDFThe Coiled Coil Domain Containing Protein 88B (CCDC88B) gene is associated with susceptibility to several inflammatory diseases in humans and its inactivation in mice protects against acute neuroinflammation and models of intestinal colitis. We report that mice lacking functional CCDC88B (Ccdc88b ) are defective in several dendritic cells (DCs)-dependent inflammatory and immune reactions in vivo. In these mice, an inflammatory stimulus (LPS) fails to induce the recruitment of DCs into the draining lymph nodes (LNs).
View Article and Find Full Text PDFOur immune system can destroy most cells in our body, an ability that needs to be tightly controlled. To prevent autoimmunity, the thymic medulla exposes developing T cells to normal "self" peptides and prevents any responders from entering the bloodstream. However, a substantial number of self-reactive T cells nevertheless reaches the periphery, implying that T cells do not encounter all self peptides during this negative selection process.
View Article and Find Full Text PDFAlthough the role of autophagy has been implicated in several forms of chronic hepatitis, it is still not fully understood. Active autophagy eliminates damaged molecules and organelles (such as mitochondria) by lysosomal degradation. In the present study, we aimed to examine and compare autophagy activity in chronic hepatitis C (CHC) and autoimmune hepatitis (AIH) by detecting the expression of autophagy (LC3 and p62) and mitochondrium-related (TOMM20) proteins, as well as the levels of selected microRNAs (miR-101, -155, -204 and - 224) known to be involved in the regulation of autophagy.
View Article and Find Full Text PDFParasitic helminths cause significant damage as they migrate through host tissues to complete their life cycle. While chronic helminth infections are characterized by a well-described Type 2 immune response, the early, tissue-invasive stages are not well understood. Here we investigate the immune pathways activated during the early stages of Heligmosomoides polygyrus bakeri (Hpb), a natural parasitic roundworm of mice.
View Article and Find Full Text PDFAcetaminophen (APAP) induced hepatotoxicity involves activation of c-Jun amino-terminal kinase (JNK), mitochondrial damage and ER stress. BGP-15, a hydroximic acid derivative, has been reported to have hepatoprotective effects in APAP overdose induced liver damage. Effect of BGP-15 was further investigated on mitochondria in APAP-overdose induced acute liver injury in mice.
View Article and Find Full Text PDF