Publications by authors named "Mandeep Sagi"

The molecular mechanism involved in chickpea ( L.) resistance to the necrotrophic fungal pathogen is not well documented. infection can cause severe damage in chickpea, resulting in significant economic losses.

View Article and Find Full Text PDF

A high-density linkage map of chickpea using 3430 SNPs was constructed and used to identify QTLs and candidate genes for ascochyta blight resistance in chickpea. Chickpea cultivation in temperate conditions is highly vulnerable to ascochyta blight infection. Cultivation of resistant cultivars in combination with fungicide application within an informed disease management package is the most effective method to control ascochyta blight in chickpeas.

View Article and Find Full Text PDF

Whole-genome sequencing-based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next-generation sequencing (NGS)-based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR-01 and CPR-02. Eleven QTLs in CPR-01 and six QTLs in CPR-02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7.

View Article and Find Full Text PDF

Ascochyta blight is one of the major diseases of chickpea worldwide. The genetic resistance to ascochyta blight in chickpea is complex and governed by multiple QTLs. However, the molecular mechanism of quantitative disease resistance to ascochyta blight and the genes underlying these QTLs are still unknown.

View Article and Find Full Text PDF