PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma.
View Article and Find Full Text PDFPTC299 is a novel small molecule that specifically blocks the production of protein from selected mRNAs that under certain conditions use noncanonical ribosomal translational pathways. Hypoxia, oncogenic transformation, and viral infections limit normal translation and turn on these noncanonical translation pathways that are sensitive to PTC299. Vascular endothelial cell growth factor (VEGF) is an example of a transcript that is posttranscriptionally regulated.
View Article and Find Full Text PDFThe impact of pepsin on the maintenance of supersaturated solution of the HCl salt of a weakly basic drug was evaluated in simulated gastric fluid by monitoring the drug solubility in the absence and presence of pepsin. In the presence of pepsin, the HCl salt maintained its apparent solubility through 24 h, whereas, no such solubility advantage was seen in the absence of pepsin. Consequently, a minimum inhibitory concentration of pepsin is required for maintenance of supersaturation.
View Article and Find Full Text PDFIn this study, the objective is to investigate the effect of the physical state of a binder on wet granulation and granule properties using a binary model system (CaCO(3)-binder), which is essential for understanding the mechanism of wet granulation when binder is added in a dry state. Part I focus on studying the phase behavior or the physical state change of four binders: PVP K12, K29/32, HPC, and HPMC, after exposure to either moisture or liquid water. Their interaction with water was studied by measuring the water sorption of binders and the binary blends of CaCO(3)-binder.
View Article and Find Full Text PDFThe objective is to provide mechanistic understanding of a preferred wet granulation process that a binder is added in a dry state. Blends of CaCO(3) and binders were prepared and used as model systems, and they were exposed to either 96% RH (rubbery/solution state) or 60% RH (glassy state) at room temperature to control the physical state of the binders, followed by high-shear granulation and particle size measurement. The blends of PVP K12, PVP K29/32, and HPC showed a significant increase in particle size after exposure to 96% RH.
View Article and Find Full Text PDFDrug-excipient compatibility studies lay the foundation for designing a chemically stable formulation for clinical and commercial development. This article describes the investigation of oxidative degradation encountered with compound A (a phenylalanine-drug complex) in a capsule dosage form. Two wet- granulation capsule formulations (2.
View Article and Find Full Text PDFSynthesis of phosphonooxymethyl derivatives of ravuconazole, 2 (BMS-379224) and 3 (BMS-315801) and their biological evaluation as potential water-soluble prodrugs of ravuconazole are described. The phosphonooxymethyl ether analogue 2 (BMS-379224) and N-phosphonooxymethyl triazolium salt 3 (BMS-315801) were both prepared from ravuconazole (1) and bis-tert-butyl chloromethylphosphate, but under two different conditions. Both derivatives were highly soluble in water and converted to the parent in alkaline phosphatase, and also in vivo (rat).
View Article and Find Full Text PDF