Publications by authors named "Mandala Maurizio"

Placental protein 13 (PP13) exhibits a plasma concentration that increases gradually during normal gestation, a process that is disrupted in preeclampsia, which is characterized by elevated vascular resistance, reduced utero-placental blood flow, and intrauterine growth restriction. This study investigated PP13's role in vascular tone regulation and its molecular mechanisms. Uterine and subcutaneous arteries, isolated from both pregnant and non-pregnant women, were precontracted with the thromboxane analogue U46619 and exposed to PP13 using pressurized myography.

View Article and Find Full Text PDF

Numerous animal models have demonstrated that caloric restriction (CR) is an excellent tool to delay aging and increase the quality of life, likely because it counteracts age-induced oxidative stress and inflammation. The aging process can affect the prostate in three ways: the onset of benign prostatic hyperplasia, prostatitis, and prostate cancer. In this study, we used 14 aged male Sprague Dawley rats, which were allocated into two groups, at the age of 18 months old.

View Article and Find Full Text PDF

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health.

View Article and Find Full Text PDF

Introduction: CD93 plays a crucial role in endothelial homeostasis and angiogenesis. Recently its role in hypertension has been investigated, holding promise for novel targeted diagnostic and therapeutic strategies.

Aim: We assessed for the first time differences in first trimester serum CD93 levels in women who lately developed preeclampsia (PE) vs.

View Article and Find Full Text PDF

Dietary exposure to Bisphenol A (BPA), an industrial chemical present in food containers, affects nutrient metabolism in the myocardium of offspring during intrauterine life. Using a murine model, we observed that fetal hearts from mothers exposed to BPA (2.5 μg/kg/day) for 20 days before mating and for all of the gestation had decreased expression of glucose transporter-1 (GLUT1), the principal sugar transporter in the fetal heart, and increased expression of fatty acid cluster of differentiation 36 transporter (CD36), compared to control fetuses from vehicle-treated mothers.

View Article and Find Full Text PDF

Introduction: Accumulating evidence demonstrates the importance of the galectin protein Placental Protein 13 (PP13) in predicting Preeclampsia (PE), a gestational disorder that has no cure and is associated with a compromised uterine vascular adaptation to pregnancy. Uterine vasculature undergoes significant remodeling (growth in length and in circumference) during normal pregnancy to accommodate the increased blood volume to the feto-placental unit. The aim of this study was to demonstrate the role of PP13 on the uterine veins (UVs).

View Article and Find Full Text PDF

Increasing levels of estrogens across gestation are partly responsible for the physiological adaptations of the maternal vasculature to pregnancy. The G protein-coupled estrogen receptor (GPER) mediates acute vasorelaxing effects in the uterine vasculature, which may contribute to the regulation of uteroplacental blood flow. The aim of this study was to investigate whether GPER expression and vasorelaxation may occur following pregnancy.

View Article and Find Full Text PDF

Nutrition plastically modulates the epigenetic landscape in various tissues of an organism during life via epigenetic changes. In the present study, to clarify whether this modulation involves RNA methylation, we evaluated global RNA methylation profiles and the expression of writer, reader, and eraser genes, encoding for enzymes involved in the RNA methylation. The study was carried out in the heart, liver, and kidney samples from rats of different ages in response to a low-calorie diet.

View Article and Find Full Text PDF

Cerebral arteries play a crucial role in the regulation of blood flow to the brain to satisfy the demand of oxygen and glucose for proper function of the organ. Physiological cerebral blood flow (CBF) is maintained within a normal range in response to changes in blood pressure a mechanism named Cerebral Blood Flow Auto Regulation (CBFAR). Structure and function of cerebral arteries have an important impact on CBFAR.

View Article and Find Full Text PDF

Acetylsalicylic acid (aspirin) exhibits a broad range of activities, including analgesic, antipyretic, and antiplatelet properties. Recent clinical studies also recommend aspirin prophylaxis in women with a high risk of pre-eclampsia, a major complication of pregnancy characterized by hypertension. We investigated the effect of aspirin on mesenteric resistance arteries and found outdiscovered the molecular mechanism underlying this action.

View Article and Find Full Text PDF

Outward remodeling of the maternal uterine circulation during pregnancy is essential for normal uteroplacental perfusion and pregnancy outcome. The physiological mechanism by which this process is regulated is unknown; we hypothesized that it involved the normalization of wall shear stress (WSS). Pregnant Sprague-Dawley rats underwent unilateral ligation of the main uterine artery and vein at the cervical end of the uterus on gestational day 10, thus restricting inflow/outflow of blood into that uterine horn to a single point at the ovarian end; the contralateral sham-operated side provided an internal control.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing plastics. BPA exposure originates principally from the diet, but it can also originate from dermal contact. In over 90% of individuals, including pregnant women, BPA is detectable in several body fluids.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a widespread environmental contaminant, found in human fluids and tissues. Maternal BPA exposure is associated with alterations in pregnancy outcomes. Because maternal uterine circulation plays a crucial role in normal placenta and fetal growth, we hypothesized that BPA compromises the function of uterine arteries (UAs) and fetoplacental development.

View Article and Find Full Text PDF

Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes.

View Article and Find Full Text PDF

Vascular changes of tone and biomechanical properties induced by ageing increase the risk for cardiovascular diseases. Caloric restriction (CR) has been shown to protect against cardiovascular diseases and improve endothelial dysfunction in cerebral resistance arteries. We hypothesise that CR will enhance vascular tone and structural properties of cerebral resistance arteries and exert comparable beneficial effects on the systemic vasculature of aged rat model.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder featuring altered neuronal circuitry and consequently impaired social interactions, restrictive interests plus repetitive stereotypic activities. In the present study, differentiated behaviors of valproic (VPA) and propionic (PPA) acid-mediated autism rats were correlated to cerebral scaffolding proteins (Shank1,3) and BDNF expression variations. Sprague-Dawley offspring that received VPA during pregnancy displayed a notably diminished permanence (-78 %, p < 0.

View Article and Find Full Text PDF

Recent evidence suggests that the reason Extra Virgin Olive Oil (EVOO) lowers blood pressure and reduces the risk of developing hypertension is partly due to minor components of EVOO, such as phenols. However, little is still known about the mechanism(s) through which EVOO phenols mediate anti-hypertensive effects. The aim of the present study was to investigate the mechanisms of action of EVOO phenols on mesenteric resistance arteries.

View Article and Find Full Text PDF

Background: A major problem of aging is the disruption of metabolic homeostasis. This is particularly relevant in the brain where it provokes neurodegeneration. Caloric restriction is a physiologic intervention known to delay the deleterious consequences of aging in several species ranging from yeast to mammals.

View Article and Find Full Text PDF
Article Synopsis
  • Caloric restriction (CR) has been shown to extend lifespan and improve health in various animal models, including humans, by inducing beneficial cardiometabolic changes.
  • A study on aged and obese rats revealed that long-term CR significantly improved oxidative/inflammatory balance and increased circulating adiponectin levels.
  • Findings suggest that the inflammatory and oxidative imbalances observed in obese aged rats are more closely related to obesity itself rather than the aging process.
View Article and Find Full Text PDF

Accumulating evidence has shown the beneficial health effects of extra virgin olive oil (EVOO) consumption in reducing blood pressure and preventing the risk of developing hypertension. Some studies associate the hypotensive activity of EVOO to a minor component-the phenols. This study was designed to investigate the effects of EVOO phenols on the rat resistance mesenteric artery (MA) and to find out the possible vascular pathways involved.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a synthetic compound widely used for the production of polycarbonate plasticware and epoxy resins. BPA exposure is widespread and more than 90% of individuals have detectable amounts of the molecule in their body fluids, which originates primarily from diet. Here, we investigated whether prenatal exposure to BPA affects the mevalonate (MVA) pathway in rat brain fetuses, and whether potential effects are sex-dependent.

View Article and Find Full Text PDF

This work aims to clarify the effect of dietary supplementation with Bisphenol A (BPA), a chemical widely present in beverage and food containers, on placental glucose transfer and pregnancy outcome. The study was performed on female Sprague Dawley rats fed with a diet containing BPA (2.5, 25 or 250 μg/Kg/day) for a period of a month (virgin state) plus 20 days during pregnancy.

View Article and Find Full Text PDF

During pregnancy, the maternal cardiovascular system undergoes significant changes, including increased heart rate, cardiac output, plasma volume, and uteroplacental blood flow (UPBF) that are required for a successful pregnancy outcome. The increased UPBF is secondary to profound circumferential growth that extends from the downstream small spiral arteries to the upstream conduit main uterine artery. Although some of the mechanisms underlying uterine vascular remodeling are, in part, known, the factors that drive the remodeling are less clear.

View Article and Find Full Text PDF